Laroche, A.; Ritzen, L.; Guillén, J.A.M.; Vercillo, V.; D’Acunzi, M.; Sharifi Aghili, A.; Hussong, J.; Vollmer, D.; Bonaccurso, E. Durability of Superamphiphobic Polyester Fabrics in Simulated Aerodynamic Icing Conditions. Coatings2020, 10, 1058.
Laroche, A.; Ritzen, L.; Guillén, J.A.M.; Vercillo, V.; D’Acunzi, M.; Sharifi Aghili, A.; Hussong, J.; Vollmer, D.; Bonaccurso, E. Durability of Superamphiphobic Polyester Fabrics in Simulated Aerodynamic Icing Conditions. Coatings 2020, 10, 1058.
Abstract
Fabrics treated to repel water, superhydrophobic, and water and oil, superamphiphobic, have numerous industrial and consumer-level benefits. These coatings are typically non-permanent. This is largely due to chemical or physical changes of the coating to prolonged exposure to relatively harsh environments. To develop more durable fabric treatments for specific applications, it is necessary to measure the extent to which the treated fabrics retain their low-wettability after being subjected to controlled aggressive environmental conditions. In this study, plain weave fabrics made from polyester filaments and coated with silicone nanofilaments in-solution were exposed to aerodynamic icing conditions. The coated fabrics showed superhydrophobic behavior, or superamphiphobic for those that were fluorinated. The wettability of the fabrics was progressively evaluated by contact angle and roll-off-angle measurements. The fabrics were able to maintain their low-wettability characteristics after exposure to water droplet clouds at airspeeds up to 120 m/s, despite damage to the silicone nanofilaments, visible through scanning electron microscopy.
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.