Preprint
Article

Hybrid Data-Driven and Physics-Based Modelling for Gas-Turbine Prescriptive Analytics

This version is not peer-reviewed.

Submitted:

17 September 2020

Posted:

20 September 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
This paper presents a methodology for predictive and prescriptive analytics of complex engineering systems. The methodology is based on a combination of physics-based and data-driven modeling using machine learning techniques. Combining these approaches results in a set of reliable, fast, and continuously updating models for prescriptive analytics. The methodology is demonstrated with a case study of a jet-engine power plant preventive maintenance and diagnostics of its flame tube.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

484

Views

389

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated