Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Statistical Principles of Natural Philosophy

Version 1 : Received: 12 September 2020 / Approved: 14 September 2020 / Online: 14 September 2020 (00:04:07 CEST)
Version 2 : Received: 31 December 2020 / Approved: 5 January 2021 / Online: 5 January 2021 (11:14:18 CET)
Version 3 : Received: 12 November 2021 / Approved: 15 November 2021 / Online: 15 November 2021 (11:10:16 CET)
Version 4 : Received: 7 June 2022 / Approved: 7 June 2022 / Online: 7 June 2022 (08:32:15 CEST)
Version 5 : Received: 10 November 2022 / Approved: 10 November 2022 / Online: 10 November 2022 (03:53:56 CET)

A peer-reviewed article of this Preprint also exists.

Guo, T. Dynamics of stochastic-constrained particles. Sci Rep 13, 2759 (2023). https://doi.org/10.1038/s41598-023-29940-y Guo, T. Dynamics of stochastic-constrained particles. Sci Rep 13, 2759 (2023). https://doi.org/10.1038/s41598-023-29940-y

Abstract

Currently, natural philosophy (Physics) lacks the most fundamental model and a complete set of self-consistent explanations. This article attempts to discuss several issues related to this lack. Starting from the most basic philosophical paradoxes, I deduce a physical model (the natural philosophical outlook) to describe the laws governing the operation of the universe. Based on this model, a mathematical model is established to describe the generalized diffusion behavior of a moving particle swarm, and its simple verification is carried out. In this article, the gravitational force and relativistic effects are interpreted for the first time as a statistical effect of randomly moving particles. Thus, the gravitational force and special relativistic effects are integrated into a single equation (achieved by selecting an initial wave function with a specific norm when solving it), and the cause of stable particle formation is also revealed. The derived equation and the method of acquiring the initial wave function are fully self-consistent with the hypotheses stated in the physical model, thereby also proving the reliability of the physical model to some extent. Some of these ideas may have potential value as a basis for understanding the essence of quantum mechanics, relativity and superstring theory, as well as for gaining a further understanding of nature and the manufacture of quantum computers.

Keywords

randomly moving particles; statistical effect; generalized diffusion equation

Subject

Arts and Humanities, Philosophy

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.