Working Paper Article Version 1 This version is not peer-reviewed

Generating Fake ECGs using GANs for Anonymizing Healthcare Data

Version 1 : Received: 31 August 2020 / Approved: 3 September 2020 / Online: 3 September 2020 (05:26:01 CEST)

How to cite: Piacentino, E.; Guarner, A.; Angulo, C. Generating Fake ECGs using GANs for Anonymizing Healthcare Data. Preprints 2020, 2020090060 Piacentino, E.; Guarner, A.; Angulo, C. Generating Fake ECGs using GANs for Anonymizing Healthcare Data. Preprints 2020, 2020090060

Abstract

In personalized healthcare, an ecosystem for the manipulation of reliable and safe private data should be orchestrated. This paper describes a first approach for the generation of fake electrocardiograms (ECGs) based on Generative Adversarial Networks (GANs) with the objective of anonymizing users’ information for privacy issues. This is intended to create valuable data that can be used both, in educational and research areas, while avoiding the risk of a sensitive data leakage. As GANs are mainly exploited on images and video frames, we are proposing general raw data processing after transformation into an image, so it can be managed through a GAN, then decoded back to the original data domain. The feasibility of our transformation and processing hypothesis is primarily demonstrated. Next, from the proposed procedure, main drawbacks for each step in the procedure are addressed for the particular case of ECGs. Hence, a novel research pathway on health data anonymization using GANs is opened and further straightforward developments are expected.

Subject Areas

GAN; ECG; anonymization; healthcare data; sensors; data transformation

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.