Submitted:

30 August 2020

Posted:

31 August 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Kluyveromyces marxianus (K. marxianus) is a newly emerging industrially relevant yeast. It is known to possess a highly efficient Non-Homologous End Joining (NHEJ) pathway that promotes random integration of non-homologous DNA fragments into its genome. The nature of the integration events was traditionally analyzed by Southern blot hybridization. However, the precise DNA sequence at the insertion sites were not fully explored. We transformed a PCR product of the Saccharomyces cerevisiae URA3 gene (ScURA3) into an uracil auxotroph K. marxianus wildtype strain and picked 24 stable Ura+ transformants for sequencing analysis. We took advantage of rapid advances in DNA sequencing technologies and developed a method using a combination of Illumina MiSeq and Oxford Nanopore sequencing. This approach enables us to uncover the Gross Chromosomal Rearrangements (GCRs) that are associated with the ScURA3 random integration. Moreover, it will shine a light on understanding DNA repair mechanisms in Eukaryotes, which could potentially provide insights for cancer research.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

364

Views

187

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated