Preprint
Article

This version is not peer-reviewed.

Matrix-based Approaches for Updating Approximations in Neighborhood Multigranulation Rough Sets while Neighborhood Classes Decreasing or Increasing

A peer-reviewed article of this preprint also exists.

Submitted:

30 July 2020

Posted:

05 August 2020

You are already at the latest version

Abstract
With the revolution of computing and biology technology, data sets containing information could be huge and complex that sometimes are difficult to handle. Dynamic computing is an efficient approach to solve some of the problems. Since neighborhood multigranulation rough sets(NMGRS) were proposed, few papers focused on how to calculate approximations in NMGRS and how to update them dynamically. Here we propose approaches for computing approximations in NMGRS and updating them dynamically. First, static approaches for computing approximations in NMGRS are proposed. Second, search region in data set for updating approximations in NMGRS is shrunk. Third, matrix-based approaches for updating approximations in NMGRS while decreasing or increasing neighborhood classes are proposed. Fourth, incremental algorithms for updating approximations in NMGRS while decreasing or increasing neighborhood classes are designed. Finally, the efficiency and validity of the designed algorithms are verified by experiments.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated