Preprint
Article

This version is not peer-reviewed.

Study of Rayleigh Taylor Instability with the Help of CFD Simulation

Submitted:

16 July 2020

Posted:

17 July 2020

You are already at the latest version

Abstract
The purpose of this paper is to simulate a two-dimensional Rayleigh-Taylor instability problem using the classical method of Finite Element analysis of a multiphase model using ANSYS FLUENT 19.2. The governing equations consist of a system of coupled nonlinear partial differential equations for conservation of mass, momentum and phase transport equations. The study focuses on the transient state simulation of Rayleigh Taylor waves and subsequent turbulent mixing in the two phases incorporated in the model. The Rayleigh Taylor instability is an instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid in a gravitational field. The problem was governed by the Navier-Stokes and Cahn-Hilliard equations in a primitive variable formulation. The Cahn- Hilliard equations were used to capture the interface between two fluids systems. The objective of this article is to perform grid dependency test on Rayleigh Taylor Instability for 2 different mesh size and compare the results for the variation in Atwood Number. The results were validated with the observations from previous published literatures.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated