Working Paper Article Version 1 This version is not peer-reviewed

Shell Disorder Analysis Suggests That Pangolins Offered a Window for a Silent Spread of an Attenuated SARS-CoV-2 Precursor among Humans

Version 1 : Received: 26 June 2020 / Approved: 28 June 2020 / Online: 28 June 2020 (09:16:27 CEST)

A peer-reviewed article of this Preprint also exists.

Goh, G. K. M., Dunker, A. K., Foster, J. A., & Uversky, V. N. (2020). Shell disorder analysis suggests that pangolins offered a window for a silent spread of an attenuated SARS-CoV-2 precursor among humans. Journal of Proteome Research, 19(11), 4543-4552. Goh, G. K. M., Dunker, A. K., Foster, J. A., & Uversky, V. N. (2020). Shell disorder analysis suggests that pangolins offered a window for a silent spread of an attenuated SARS-CoV-2 precursor among humans. Journal of Proteome Research, 19(11), 4543-4552.

Abstract

A model to predict the relative levels of respiratory and fecal-oral transmission potentials of coronaviruses (CoVs) by measuring the percentage of protein intrinsic disorder (PID) of the M (Membrane) and N (nucleoprotein) proteins in their outer and inner shells, respectively, was built before the MERS-CoV outbreak. Application of this model to the 2003 SARS-CoV indicated that this virus with MPID = 8.6% and NPID = 50.2% falls into group B, which consists of CoVs with intermediate levels of both fecal-oral and respiratory transmission potentials. Further validation of the model came with MERS-CoV (MPID = 9%, NPID = 44%) and SARS-CoV-2 (MPID = 5.5%, NPID = 48%) falling into the groups C and B, respectively. Group C contains CoVs with higher fecal-oral but lower respiratory transmission potentials. Unlike SARS-CoV, SARS-CoV-2 with MPID = 5.5% has one of the hardest outer shells among CoVs. This shell hardness is believed to be responsible for high viral loads in the mucus and saliva making it more contagious than SARS-CoV. The hard shell is able to resist the anti-microbial enzymes in body fluids. Further searches have found that high rigidity of outer shell is characteristic for the CoVs of burrowing animals, such as rabbits (MPID = 5.6%) and pangolins (MPID = 5-6%), which are in contact with the buried feces. A closer inspection of pangolin-CoVs from 2017-19 reveals that these animals provided a unique window of opportunity for the entry of an attenuated SARS-CoV-2 precursor into the human population in 2017 or earlier, with the subsequent slow and silent spread as a mild cold that followed by its mutations into the current more virulent form. Evidence of this lies in the similarity of shell disorder and genetic proximity of the pangolin-CoVs to SARS-CoV-2 (~90%). A 2017 pangolin-CoV strain shows evidence of higher levels of attenuation and higher fecal-oral transmission associated with lower human infectivity via having lower NPID (44.8%). Our shell disorder analysis also revealed that lower inner shell disorder is associated with the lesser virulence in a variety of viruses.

Keywords

pangolin; intrinsic; disorder; protein; nucleocapsid; Nipah; virulence; viral protein; protein structure; protein function; shell; covid; coronavirus; ebola; vaccine; immune; antibody; shell; nucleoprotein; matrix; attenuate

Subject

Medicine and Pharmacology, Pulmonary and Respiratory Medicine

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.