Preprint
Article

Comparison of a Triple Inverted Pendulum Stabilization Using Optimal Control Technique

This version is not peer-reviewed.

Submitted:

09 June 2020

Posted:

10 June 2020

You are already at the latest version

Abstract
In this paper, modelling design and analysis of a triple inverted pendulum have been done using Matlab/Script toolbox. Since a triple inverted pendulum is highly nonlinear, strongly unstable without using feedback control system. In this paper an optimal control method means a linear quadratic regulator and pole placement controllers are used to stabilize the triple inverted pendulum upside. The impulse response simulation of the open loop system shows us that the pendulum is unstable. The comparison of the closed loop impulse response simulation of the pendulum with LQR and pole placement controllers results that both controllers have stabilized the system but the pendulum with LQR controllers have a high overshoot with long settling time than the pendulum with pole placement controller. Finally the comparison results prove that the pendulum with pole placement controller improve the stability of the system.
Keywords: 
Inverted pendulum; linear quadratic regulator; Pole placement
Subject: 
Engineering  -   Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

928

Views

162

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated