Preprint
Article

This version is not peer-reviewed.

Novel Lockstep-based Approach with Roll-back and Roll-forward Recovery to Mitigate Radiation-Induced Soft Errors

Submitted:

07 August 2020

Posted:

08 August 2020

You are already at the latest version

Abstract
An attractive option for realizing applications in radiation environments is to employ All-Programmable System-on-Chips (APSoCs) thanks to their high-performance computing and power efficiency merits. Despite APSoC's advantages, like any other electronic device, they are prone to radiation effects. Processors found in APSoCs must, therefore, be adequately hardened against ionizing-radiation to become a viable alternative for harsh environments. This paper proposes a novel triple-core lockstep (TCLS) approach to secure the Xilinx Zynq-7000 APSoC dual-core ARM Cortex-A9 processor against radiation-induced soft errors by coupling it with a MicroBlaze TMR subsystem in Zynq's programmable logic (PL) layer. The proposed strategy uses software-level checkpointing principles along with roll-back and roll-forward mechanisms (i.e. software redundancy), and hardware-level processor replication as well as checker circuits (i.e. hardware redundancy). Results of fault injection experiments show that the proposed solution achieved high soft error security by mitigating about 99% of bit-flips injected into both ARM cores' register data.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated