Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Investigation of Interfacial Microstructure and Tensile Strength of Ultrasonic Welding Joints on Nonwoven Fabrics

Version 1 : Received: 4 June 2020 / Approved: 5 June 2020 / Online: 5 June 2020 (14:01:01 CEST)

A peer-reviewed article of this Preprint also exists.

Nguyen, T.-H.; Thanh, L.Q.; Loc, N.H.; Huu, M.N.; Nguyen Van, A. Effects of Different Roller Profiles on the Microstructure and Peel Strength of the Ultrasonic Welding Joints of Nonwoven Fabrics. Appl. Sci. 2020, 10, 4101. Nguyen, T.-H.; Thanh, L.Q.; Loc, N.H.; Huu, M.N.; Nguyen Van, A. Effects of Different Roller Profiles on the Microstructure and Peel Strength of the Ultrasonic Welding Joints of Nonwoven Fabrics. Appl. Sci. 2020, 10, 4101.

Journal reference: Appl. Sci. 2020, 10, 4101
DOI: 10.3390/app10124101

Abstract

Nonwoven fabrics have been widely used in textile manufacturing industry as a sheet or web structure because of soft, water-repellent, recycle, ecological and resilient functions. Ultrasonic welding method has been applied for bonding nonwoven fabrics due to clean, fast and reliable approach. In this work, the ultrasonic stepped horn is designed to generate uniform amplitudes on the working surface by using finite element analysis (FEA) simulation. Chromium carbon steels are utilized to produce ultrasonic horns due to high wear resistant and hardness. Isotactic polypropylene nonwoven fabrics fabricated by spunbond process were bonded by continuous ultrasonic sewing machine. Ultrasonic horn with 70 mm in diameter working at 20 kHz, polypropylene (PP) nonwoven density of 80 gsm and various design of welding joints were applied. A typical image in the case of number one was investigated by the scanning electron microscope (SEM) images of inter-facial micro-structure. However, welding joints of totally eight roller patterns was test the tensile strength of the ultrasonic welding joints on PP nonwoven fabrics. The tensile strength of the welding joints is proportional to the area ratio between the welding area and cycling area. The results showed that the melted zone without welding defects such as crack or blowhole can be seen. Furthermore, the tensile strength of welding joints in eight cases of roller patterns (No.1-No.8) was described in details. The ultrasonic welding joints with brick structures give higher tensile strength while the solid line in the pattern gave less strength.

Subject Areas

horn design; ultrasonic welding; nonwoven fabric; micro-structure; tensile strength

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.