Preprint
Article

Online Sequential Extreme Learning Machine: A New Training Scheme for Restricted Boltzmann Machines

This version is not peer-reviewed.

Submitted:

25 May 2020

Posted:

27 May 2020

You are already at the latest version

Abstract
Abstract: The main contribution of this paper is to introduce a new iterative training algorithm for restricted Boltzmann machines. The proposed learning path is inspired from online sequential extreme learning machine one of extreme learning machine variants which deals with time accumulated sequences of data with fixed or varied sizes. Recursive least squares rules are integrated for weights adaptation to avoid learning rate tuning and local minimum issues. The proposed approach is compared to one of the well known training algorithms for Boltzmann machines named “contrastive divergence”, in term of time, accuracy and algorithmic complexity under the same conditions. Results strongly encourage the new given rules during data reconstruction.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

535

Views

454

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated