Preprint
Article

DEBoost: A Python Library for Weighted Distance Ensembling in Machine Learning

This version is not peer-reviewed.

Submitted:

22 May 2020

Posted:

23 May 2020

You are already at the latest version

Abstract
In this paper, we introduce deboost, a Python library devoted to weighted distance ensembling of predictions for regression and classification tasks. Its backbone resides on the scikit-learn library for default models and data preprocessing functions. It offers flexible choices of models for the ensemble as long as they contain the predict method, like the models available from scikit-learn. deboost is released under the MIT open-source license and can be downloaded from the Python Package Index (PyPI) at https://pypi.org/project/deboost. The source scripts are also available on a GitHub repository at https://github.com/weihao94/DEBoost.
Keywords: 
ensemble learning; machine learning; Python; spatial distance; statistical distance; weighted ensemble
Subject: 
Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

521

Views

321

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated