Version 1
: Received: 16 May 2020 / Approved: 18 May 2020 / Online: 18 May 2020 (04:18:39 CEST)
Version 2
: Received: 14 June 2020 / Approved: 15 June 2020 / Online: 15 June 2020 (06:44:57 CEST)
Komoshvili, K.; Israel, K.; Levitan, J.; Yahalom, A.; Barbora, A.; Liberman-Aronov, S. W-Band Millimeter Waves Targeted Mortality of H1299 Human Lung Cancer Cells without Affecting Non-Tumorigenic MCF-10A Human Epithelial Cells In Vitro. Appl. Sci.2020, 10, 4813.
Komoshvili, K.; Israel, K.; Levitan, J.; Yahalom, A.; Barbora, A.; Liberman-Aronov, S. W-Band Millimeter Waves Targeted Mortality of H1299 Human Lung Cancer Cells without Affecting Non-Tumorigenic MCF-10A Human Epithelial Cells In Vitro. Appl. Sci. 2020, 10, 4813.
Komoshvili, K.; Israel, K.; Levitan, J.; Yahalom, A.; Barbora, A.; Liberman-Aronov, S. W-Band Millimeter Waves Targeted Mortality of H1299 Human Lung Cancer Cells without Affecting Non-Tumorigenic MCF-10A Human Epithelial Cells In Vitro. Appl. Sci.2020, 10, 4813.
Komoshvili, K.; Israel, K.; Levitan, J.; Yahalom, A.; Barbora, A.; Liberman-Aronov, S. W-Band Millimeter Waves Targeted Mortality of H1299 Human Lung Cancer Cells without Affecting Non-Tumorigenic MCF-10A Human Epithelial Cells In Vitro. Appl. Sci. 2020, 10, 4813.
Abstract
Therapeutically effective treatments of cancer are limited. To calibrate the efficiency of the novel technique we recently discovered to modulate cancer cell viability using tuned electromagnetic fields; H1299 human lung cancer cells were irradiated in a sweeping regime of W-band (75-105 GHz) millimeter waves (MMW) at 0.2 mW/cm2 (2 W/m2). Effects on cell morphology, cell death and senescence were examined and compared to that of non-tumorigenic MCF-10A human epithelial cells. MMW irradiation led to alterations of cell and nucleus morphology of H1299 cells, significantly increasing mortality and senescence over 14 days of observation. Extended irradiation of 10 minutes duration resulted in complete death of exposed H1299 cell population within two days, while healthy MCF-10A cells remained unaffected even after 16 minutes of irradiation under the same conditions. Irradiation effects were observed to be specific to MMW treated H1299 cells and absent in the control group of non-irradiated cells. MMW irradiation affected nuclear morphology of H1299 cells only and not of the immortalized MCF-10A cells. Irradiation with low intensity MMW shows an antitumor effect on H1299 lung cancer cells. This method provides a novel treatment modality enabling targeted specificity for various types of cancers.
Keywords
W-band (75-105 GHz) MMW; H1299 human lung cancer cells; non-tumorigenic MCF-10A human epithelial cells; in vitro
Subject
Biology and Life Sciences, Biophysics
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.