Preprint Communication Version 1 Preserved in Portico This version is not peer-reviewed

Outcomes Comparison of SpCas9- and LbCas12a-mediated DNA Editing in Zebrafish Embryos

Version 1 : Received: 14 May 2020 / Approved: 15 May 2020 / Online: 15 May 2020 (10:16:55 CEST)

A peer-reviewed article of this Preprint also exists.

Meshalkina, D.A.; Glushchenko, A.S.; Kysil, E.V.; Mizgirev, I.V.; Frolov, A. SpCas9- and LbCas12a-Mediated DNA Editing Produce Different Gene Knockout Outcomes in Zebrafish Embryos. Genes 2020, 11, 740. Meshalkina, D.A.; Glushchenko, A.S.; Kysil, E.V.; Mizgirev, I.V.; Frolov, A. SpCas9- and LbCas12a-Mediated DNA Editing Produce Different Gene Knockout Outcomes in Zebrafish Embryos. Genes 2020, 11, 740.

Abstract

CRISPR/Cas genome editing is a widely used research technology. Its simplest variant is gene knockout resulting from reparation errors after introduction of dsDNA breaks by Cas nuclease. We compared the outcomes of the break repair by two commonly used nucleases (SpCas9 and LbCas12a) in zebrafish embryos to reveal if application of one nuclease is advantageous in comparison to the other. To address this question, we injected ribonucleoprotein complexes of nucleases and corresponding guide RNAs in zebrafish zygotes and three days later sequenced the target gene regions. We found that LbCas12a breaks resulted in longer deletions and more rare inserts, in comparison to those generated by SpCas9, while the editing efficiencies of both nucleases were the same. On the other hand, overlapping protospacers were shown to lead to similarities in repair outcome, although they were cut by two different nucleases. Thus, our results indicate that the repair outcome depends both on the nuclease mode of action and on protospacer sequence.

Keywords

Cas9; Cas12a; Cpf1; zebrafish; gene knockout; repair outcome

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.