Preprint
Article

This version is not peer-reviewed.

Predictive Analytics of COVID-19 Using Information, Communication and Technologies

Submitted:

15 April 2020

Posted:

16 April 2020

Read the latest preprint version here

Abstract
Globally, there is massive uptake and explosion of data and challenge is to address issues like scale, pace, velocity, variety, volume and complexity of the data. Considering the recent epidemic in China, modeling of COVID-19 epidemic for cumulative number of infected cases using data available in early phase was big challenge. Being COVID-19 pandemic during very short time span, it is very important to analyze the trend of these spread and infected cases. This predictive analytics can be empowered using Information, Communication and Technologies (ICT) services, tools and applications. This paper presents medical perspective of COVID-19 towards epidemiological triad and the study of state-of-the-art. The main aim this paper is to present different predictive analytics techniques available for trend analysis, different models and algorithms and their comparison. Finally, this paper concludes with prediction of COVID-19 using Prophet algorithm indicating more faster spread in short term. These predictions will be useful to government and healthcare communities to initiate appropriate measures to control this outbreak in time.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated