Preprint
Hypothesis

Epigallocatechin-Gallate and Theaflavin-Gallate Interaction in SARS CoV-2 Spike-Protein Central-Channel with Reference to the Hydroxychloroquine Interaction: Bioinformatics and Molecular Docking Study

This version is not peer-reviewed.

Submitted:

14 April 2020

Posted:

15 April 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
SARS CoV-2 or COVID-19 pandemic global-outbreak created the most unstable situation of human health-economy. Last two decades different parts of the word experienced smaller or bigger outbreak related to human-coronaviruses. The spike-glycoproteins of the COVID-19 (similar to SARS-CoV) attach to the angiotensin-converting-enzyme (ACE-2) and transit over a stabilized open-state for the viral-internalization to the host-cells and propagate with great efficacy. Higher rate of mutability makes this virus unpredictable/less-sensitive to the protein/nucleic-acid based-drugs. In this emergent situation, drug-induced destabilization of spike-binding to RBD could be a good strategy. In the current study we demonstrated by Bioinformatics (CASTp: Computed-Atlas-of-Surface-Topography, PyMol: molecular-visualization) and Molecular docking (PatchDock) experiments that tea flavonoids catechin-products mainly EGCG or other like theaflavin gallate demonstrated higher Atomic Contact Energy (ACE), surface area and more amino-acid interactions than hydroxychloroquine (HCQ) during binding in the central channel of the spike-protein. Moreover, out of three distinct binding-sites (I, II and III) of spike core when HCQ binds only with site III (farthest from the vCoV-RBD of ACE2 contact), EGCG and TG bind all three sites. As because site I and II is in closer contact with open state location and viral-host contact area so these drugs might have significant effects. Taking into account the toxicity/side-effects by CQ/HCQ, present drugs may be important. Our laboratory is working on tea flavonoids and other phytochemicals in the protection from toxicity, DNA/mitochondrial damage, inflammation etc. The present data might be helpful for further analysis of flavonoids in this emergent pandemic situation.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

1368

Views

1150

Comments

1

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated