This paper analyzes the robust dissipativity of uncertain stochastic generalized neural networks (USGNNs) with Markovian jumping parameters and time-varying delays. In practical applications most of the systems refer to uncertainties, hence, the norm-bounded parameter uncertainties and stochastic disturbance are considered. Then, by constructing an appropriate Lyapunov-Krasovskii functional (LKF) and by employing integral inequalities LMI-based sufficient conditions of the considered systems are established. Numerical simulations are given to show the merit of the presented results.