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Abstract: This paper analyzes the robust dissipativity of uncertain stochastic generalized neural networks
(USGNNs) with Markovian jumping parameters and time-varying delays. In practical applications most of the
systems refer to uncertainties, hence, the norm-bounded parameter uncertainties and stochastic disturbance are
considered. Then, by constructing an appropriate Lyapunov-Krasovskii functional (LKF) and by employing
integral inequalities LMI-based sufficient conditions of the considered systems are established. Numerical
simulations are given to show the merit of the presented results.
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1. Introduction

In the last ten years, neural networks (NNs) have been gaining considerable attention because of their
important applications in optimization, signal processing, image processing, associative memories and so forth
[1]-[5]. Mainly, generalized neural networks (GNNs) has been considered an energetic research model because
of their fitting mathematical model capacity and many powerful results were published concerning the stability
of GNNs [15], [16], [35], [36]. On the other hand, time delay is the inherent feature of many physical processes
including chemical processes, nuclear reactors, which is major source of instability and poor performance [6]-[12].
Therefore, many efficient approaches and important results have been reported regarding various dynamics of
NNs with time-delays [13]-[39].

On the other side, the Markovian jumping neural network (MJNN) has recently been received significant
research interest, since MJNN extremely useful model for understanding its dynamics when the NNs incorporate
abrupt changes in their structure. To prove this matter, many effective methods have been developed [10]-[16].
On the other hand, the stochastic effects are certainly present in all neural systems. Therefore, the study of
stochastic NNs is not only interesting but also essential, because the existence of certain stochastic inputs may
affect the behavior of the system [17]-[20]. The stability of stochastic nonlinear systems has recently become an
important field of research, and considerable efforts have been devoted to Markovian jumping stochastic NNs,
several stability conditions were published recently [21]-[25]. For example, the stability of stochastic static NNs
has been investigated in [13] with Markovian switching. On the basis of Lyapunov functional, the exponential
stability of stochastic NNs with Markovian jump parameters was studied in [40]. Some other results regarding the
proposed problem can be found [22]-[24]. On the other hand, when practical systems are modelled, uncertainties
of system parameters are often included. Therefore, many systems refer to uncertainties in practical applications.
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From the practical viewpoint, it is important to investigate NNs with uncertain parameters [18], [19], [23], [24],
[28], [40].

Undoubtedly, dissipative behavior is certainly essential for control and engineering; thus, dissipativity
analysis of USGNNs presents a theoretical challenge, which has gained growing attention [26]-[28]. For instance,
in [29], three types of neuron activation functions are discussed for global dissipativity of delayed recurrent NNs,
i.e. bounded, Lipschitz-continuous and monotonous non-decreasing. In [30], the authors analyzed the global
dissipativity of NNs with both time-varying delays and unbounded delays. Meanwhile, (Q,S,R) dissipativity
theory contains multi-dynamic behaviors, which lead to effective known results by changing the weight matrices
in their structure and discovered their applications in the field of control and engineering [27]-[32]. Similar
studies on the dissipativity of various NNs can be found in [28]-[33]. To the best of the authors’ knowledge, the
problem of robust dissipativity of USGNNs with norm-bounded uncertainties has been not fully investigated and
remains a good challenge.

Motivated by these mentioned shortcomings for the existing results, in this paper we aim to establish robust
dissipativity and stability for USGNNs with Markovian jumping parameters. On the basis of Lyapunov functional
method, an appropriate LKF is constructed with more delay information and the derivative of LKF has been
estimating by new integral inequalities, which has great support to reduce the conservatism of the obtained results.
By employing Ito’s formula and some analytic techniques, robust dissipativity and stability conditions are derived
in terms of simplified LMI. Numerical simulations are also given to prove the merits of the presented results. The
layout of the paper is as follows, the problem is formally defined in the next section. The main results of this
paper are presented in section 3. Numerical examples are presented in section 4. Finally, section 5 concludes this
paper.

List of symbols: Throughout this paper, Rn and Rm×n denotes the n-dimensional Euclidean space and
the set of m× n real matrices, respectively. The superscript X T represents the transpose of X . P > 0 means
that P is the symmetric positive definite matrix. tr{D} denotes the trace of matrix D, ? denotes the elements
below the main diagonal of a symmetric block matrix. (Ω,F ,P) is complete probability space with a natural
filtration. In represents the identity matrix with appropriate dimensions. diag{.} denotes the block diagonal
matrix. L2[0,∞) is the space of an n-dimensional square integral vector function on [0,∞). E{·} denote the
mathematical expectation.

2. Problem description and preliminaries

Let {e(t), t ≥ 0} be a right-continuous Markovian process on (Ω,F ,P) and taking values in a finite state
space S = {1,2, ...,N} with generator Π = [πxy]N×N given by

Pr{e(t +4t) = y|e(t) = x}=

{
πxy4t + o(4t), if x 6= y,
1+πxx4t + o(4t), if x = y,

(1)

where4t > 0 and lim
4t→0

o(4t)
4t = 0, πxy ≥ 0 is the transition rate from x to y if x 6= y while πxx = −

N
∑

y=1,y6=x
πxy.

We consider the following GNNs with MJPs{
ṗ(t) = −D(e(t))p(t)+A(e(t))g(W (e(t))p(t))+B(e(t))g(W (e(t))p(t− r(t)))+u(t)
q(t) = g(W (e(t))p(t)),

(2)

where p(t) = [p1(t),p2(t), ...,pn(t)]T ∈ Rn is the state vector; g(W (e(t))p(·)) =[g1(W (e(t))p1(·)),
g2(W (e(t))p2(·)), ...,gn(W (e(t))pn(·))]T∈ Rn is the nonlinear neuron activation function; u(t) =

[u1(t), ....,un(t)]T ∈Rn is the external disturbance which belongs to L2[0,∞); q(t)=[q1(t),...,qn(t)]T∈Rn is the
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output vector; r(t) corresponds to the transmission delay; D(e(t)),A(e(t)),B(e(t)) and W (e(t)) are matrix
functions of e(t) and for each e(t) ∈ S,

D(e(t)) =


d1(e(t))

.
.

.
dn(e(t))

 ∈Rn, A(e(t)) =


a11(e(t)) . . . a1n(e(t))

. . .

. . .

. . .
an1(e(t)) . . . ann(e(t))

 ∈Rn×n,

B(e(t)) =


b11(e(t)) . . . b1n(e(t))

. . .

. . .

. . .
bn1(e(t)) . . . bnn(e(t))

 ∈Rn×n, W (e(t)) =


w11(e(t)) . . . w1n(e(t))

. . .

. . .

. . .
wn1(e(t)) . . . wnn(e(t))

 ∈Rn×n.

(A1): r(t) is a known time-varying delay of the system which satisfies

0≤ r(t) ≤ r, ṙ(t) ≤ µ. (3)

where r and µ are constants.
(A2): For all ζ1,ζ2 ∈R, ζ1 6= ζ2, the neuron activation function g(·) is continuous and bounded which satisfies

[g(ζ1)−g(ζ2)−∆1(ζ1−ζ2)]
T [g(ζ1)−g(ζ2)−∆2(ζ1−ζ2)] ≤ 0, (4)

where ∆1 and ∆2 are known constant matrices.
The initial condition of (2) is defined by p(t) = φ(t) on −r≤ t ≤ 0 in φ ∈ C ([−r,0];Rn).
As mentioned earlier, it is often the case in practice that the NNs is disturbed by environmental noises that affect
the stability of the equilibrium. Motivated by this we express a stochastic system whose consequent parts are a
set of stochastic Markovian jump GNNs with time-varying delays:

dp(t) = [−D(e(t))p(t)+A(e(t))g(W (e(t))p(t))+B(e(t))g(W (e(t))p(t− r(t)))+u(t)]dt
+σ(t,e(t),p(t),p(t− r(t)))dω(t),

q(t) = g(W (e(t))p(t)),
(5)

where σ(t,e(t),p(t),p(t− r(t))) is the stochastic perturbation. ω(t) = [ω1(t), ...,ωm(t)]T ∈Rm is the Brownian
motion m-space on (Ω,F ,P).
For the purpose of simplicity, let e(t) = x (x ∈ S). Then D(e(t)) = Dx, A(e(t)) = Ax,B(e(t)) = Bx and
W (e(t)) = Wx. The system (5) becomes

dp(t) = [−Dxp(t)+Axg(Wxp(t))+Bxg(Wxp(t− r(t)))+u(t)]dt
+σ(t,x,p(t),p(t− r(t)))dω(t)

q(t) = g(Wxp(t)).
(6)

For the sake of convenience, the following abbreviations are adopted in the sequel:{
ϕ(t), −Dxp(t)+Axg(Wxp(t))+Bxg(Wxp(t− r(t)))+u(t)
σ(t), σ(t,x,p(t),p(t− r(t))).

(7)

The system (6) reads as {
dp(t) = ϕ(t)dt +σ(t)dω(t)
q(t) = g(Wxp(t)).

(8)
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(A3): There exist matrices L1x > 0,L2x > 0 such that for all x ∈ S,

tr{σT (t)σ(t)} ≤ pT (t)L1xp(t)+ pT (t− r(t))L2xp(t− r(t)). (9)

For a general stochastic system dp(t) = ϕ(t)dt +σdω(t), where ω(t) is an n dimensional Brownian motion
defined on (Ω,F ,P), ϕ(·),σ(·) : R+×Rn→Rn. An operator L is defined by

LV(t,p(t),x) =Vt(t,p(t),x)+Vp(t,p(t),x)[−Dxp(t)+Axg(Wxp(t))+Bxg(Wxp(t− r(t)))+u(t)]

+
1
2

tr[σT (t,p(t),p(t− r(t)), i)Vpp(t,p(t),x)σ(t,p(t),p(t− r(t)),x)]

+
N

∑
yy=1

πxyV(t,p(t),y),

where

Vt(t,p(t),x) =
∂V(t,p(t),x)

∂t
,

Vq(t,p(t),x) =
(

∂V(t,p(t),x)
∂p1

, ...,
∂V(t,p(t), i)

∂pn

)
,

Vpp(t,p(t),x) =
(

∂2V(t,p(t),x)
∂px∂py

)
n×n

.

Definition 1. The NN (6) is said to be mean-square stable if for any ε > 0 there exists a scalar υ(ε) > 0 such
that E{‖p(t)‖2}< ε, t > 0, whenever sup

−r≤t≤0
E{‖φ(t)‖2}< υ(ε). In addition, if lim

t→∞
E{‖p(t)‖2}= 0, for any

initial condition, the NN (6) is called mean-square asymptotically stable.

Definition 2. The NN (6) is said to be strictly (Q,S,R)− γ− dissipative if, for γ > 0 and under zero initial
condition, the following inequality is satisfied:

E{G(u,q, td)} ≥ E{γ〈u,u〉td}, ∀td ≥ 0. (10)

Remark 3. The energy supply function G(u,q, td) can be express as follows

G(u,q, td) = 〈q,Qq〉td + 2〈q,Su〉td + 〈u,Ru〉td , ∀td ≥ 0, (11)

where Q,S,R ∈ Rn×n with Q,R are symmetric. The notations 〈q,Qq〉td , 〈q,Su〉td and 〈u,Ru〉td are represents∫ td
0 qT (t)Qq(t)dt,

∫ td
0 qT (t)Su(t)dt and

∫ td
0 uT (t)Ru(t)dt, respectively.

Hence, the relation (10) can be written in the following dissipativity condition:

Jγ,td =
∫ td

0
E
{[

q(t)
u(t)

]T [
Q S
? R− γI

][
q(t)
u(t)

]}
dt. (12)

Definition 4. The NN (6) is said to be passive if there exists a scalar γ > 0 such that for all td ≥ 0

2
∫ td

0
E{qT (t)u(t)}dt ≥−γ

∫ td

0
E{uT (t)u(t)}dt. (13)

holds under all solution with p(0) = 0.

Lemma 5. [37] For a given matrix W = W T > 0, given scalars s1 and s2 satisfying s1 < s2, the following
inequality holds for all continuously differentiable function ϑ in [s1,s2]→Rn:∫ s2

s1

ϑ
T (z1)W ϑ(z1)dz1 ≥

1
(s2− s1)

ϖ
T
1 Θ1ϖ1,
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where

ϖ1 =

[∫ s2

s1

ϑ
T (z1)dz1

∫ s2

s1

∫ z1

s1

ϑ
T (z2)dz2dz1

∫ s2

s1

∫ z1

s1

∫ z2

s1

ϑ
T (z3)dz3dz2dz1

]T

,

Θ1 =


9W −36

(s2−s1)
W 60

(s2−s1)2 W
−36

(s2−s1)
W T 192

(s2−s1)2 W −360
(s2−s1)3 W

60
(s2−s1)2 W T −360

(s2−s1)3 W T 720
(s2−s1)4 W

 .

Lemma 6. [38] For a given matrix R = R T > 0, given scalars s1 and s2 satisfying s1 < s2, the following
inequality holds for all continuously differentiable function ϑ in [s1,s2]→Rn:∫ s2

s1

∫ z1

s1

ϑ
T (z2)R ϑ(z2)dz2dz1 ≥

2
(s2− s1)2 ϖ

T
2 Θ2ϖ2,

where

ϖ2 =

[∫ s2

s1

∫ z1

s1

ϑ
T (z2)dz2dz1

∫ s2

s1

∫ z1

s1

∫ z2

s1

ϑ
T (z2)dz3dz2dz1

∫ s2

s1

∫ z1

s1

∫ z2

s1

∫ z3

s1

ϑ
T (z4)dz4dz3dz2dz1

]T

,

Θ2 =


6R − 30

(s2−s1)
R 60

(s2−s1)2 R
− 30

(s2−s1)
R 210

(s2−s1)2 R − 480
(s2−s1)3 R

60
(s2−s1)2 R − 480

(s2−s1)3 R 1200
(s2−s1)4 R

 .

Lemma 7. [39] Let M ∈ Rn×n be a positive-definite matrix, vector function ϑ : [s1,s2]→ Rn, with scalars
s1 < s2, then

∫ s2

s1

ϑ
T (z1)M ϑ(z1)dz1 ≥

1
(s2− s1)

[∫ s2

s1

ϑ(z1)dz1

]T

M
[∫ s2

s1

ϑ(z1)dz1

]
.

Lemma 8. [40] Let Θ = ΘT , J1 and J2 be real matrices, F (t) satisfies F T (t)F (t)≤ I . Then Θ+(J1F (t)J2)+

(J1F (t)J2)T < 0, iff there exist a scalar ε > 0 such that Θ+ ε−1J1J T
1 + εJ T

2 J2 or equivalentlyΘ J1 εJ2

? −εI 0
? ? −εI

< 0.

3. Main results63

For the notation clearness, the following abbreviations are adopted in the subsequent parts:

pt , p(t),

pr(t) , p(t− r(t)),

pr , p(t− r),

gt , g(Wxp(t)),

gr(t) , g(Wxp(t− r(t))),

qt , q(t),

ut , u(t),

ϕt , ϕ(t),
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ϕr(t) ,
∫ t

t−r
ϕ(z1)dz1,

χ1 ,
∫ t

t−r
p(z1)dz1

χ2 ,
∫ 0

−r

∫ t+z1

t−r
p(z2)dz2dz2

χ3 ,
∫ 0

−r

∫ t+z1

t−r

∫ t+z2

t−r
p(z3)dz3dz2dz1

χ4 ,
∫ 0

−r

∫ t+z1

t−r

∫ t+z2

t−r

∫ t+z3

t−r
p(z4)dz4dz3dz2dz1

ξ(t) , [pT
t ϕ

T
t pT

r(t) p
T
r gT

t gT
r(t) ϕ

T
r(t) χ

T
1 χ

T
2 χ

T
3 χ

T
4 uT

t ]
T .

3.1. Dissipativity analysis

In this subsection, several sufficient conditions for the dissipativity analysis of the considered system model
(6) will be established by using LKF and LMI method.

Theorem 9. For given scalars r and µ, the NNs (6) is (Q,S,R)− γ dissipative, if there exist matrices Px(x ∈
S) > 0,Q > 0,R > 0,S > 0,U > 0, diagonal matrices H1 > 0,H2 > 0, any matrices G1,G2 and scalar γ > 0
such that the following LMIs holds for all (x ∈ S):

Px ≤ δxI , (14)

Θ1 = (Θi, j)12×12 < 0, (15)

where

Θ1,1,x ,
N
∑

y=1
πxyPy + Q + R + r2U + r4

4 V + δxL1x − G1Dx − (G1Dx)T − H1W T
x K1Wx, Θ1,2,x ,

Px − G1 − (G2Dx)T , Θ1,5,x , G1Ax + H1W T
x K2, Θ1,6,x , G1Bx, Θ1,12,x , G1, Θ2,2,x ,

rW −G2−GT
2 , Θ2,5,x , G2Ax, Θ2,6,x , G2Bx, Θ2,12,x , G2, Θ3,3,x , −(1−µ)Q + δxL2x−H2W T

x K1Wx,
Θ3,6,x , H2W T

x K2, Θ4,4,x , −R , Θ5,5,x , S −H1−Q, Θ5,12,x , −S, Θ6,6,x , −(1−µ)S −H2, Θ7,7,x ,
− 1

rW , Θ8,8,x , −9U, Θ8,9,x , 36
r U, Θ8,10,x , − 60

r2 U, Θ9,9,x , − 192
r2 U − 6V , Θ9,10,x ,

360
r3 U + 30

r V , Θ9,11,x , − 60
r2 V , Θ10,10,x , − 720

r4 U − 210
r2 V , Θ10,11,x , 480

r3 V , Θ11,11,x , − 1200
r4 V ,

Θ12,12,x , −R+ γI .

Proof: Let us consider the LKF candidate for the NNs (6)

V(t,pt ,x) =
4

∑
i=1

Vi(t,pt ,x), (16)

where

V1(t,pt ,x) = pT
t Pxpt ,

V2(t,pt ,x) =
∫ t

t−r(t)
pT (z1)Q p(z1)dz1

+
∫ t

t−r
pT (z1)R p(z1)dz1

+
∫ t

t−r(t)
gT (Wxp(z1))Sg(Wxp(z1))dz1,
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V3(t,pt ,x) = r

∫ 0

−r

∫ t+z1

t−r
pT (z2)Up(z2)dz2dz1

+
r2

2

∫ 0

−r

∫ t+z1

t−r

∫ t+z2

t−r
pT (z3)V p(z3)dz3dz2dz1

V4(t,pt ,x) =
∫ 0

−r

∫ t+z1

t−r
ϕ

T (z2)W ϕ(z2)dz2dz1.

Let L be the weak infinitesimal random process. Then V(t,pt ,x) can be calculated by Ito’s formula that

dV(t,pt ,x) = LV(t,pt ,x)dt + {σ(t,x,pt ,pr(t)}dω(t), (17)

where

LV(t,pt ,x) =
4

∑
i=1

LVi(t,pt ,x). (18)

Now we calculate LV(t,pt ,x) along the solutions of the NNs (6), one has

LV1(t,pt ,x) = 2pT
t Pxϕt + pT

t

( N

∑
y=1

πxyPy

)
pt + tr{σT (t)Pxσ(t)}, (19)

LV2(t,pt ,x) = pT
t Q pt − (1− ṙ(t))pT

r(t)Q pr(t)+ pT
t R pt −pT

r R pr

+gT
t Sgt − (1− ṙ(t))gT

r(t)Sgr(t),

≤ pT
t Q pt − (1−µ)pT

r(t)Q pr(t)+ pT
t R pt −pT

r R pr

+gT
t Sgt − (1−µ)gT

r(t)Sgr(t), (20)

LV3(t,pt ,x) = r2pT
t Upt − r

∫ t

t−r
pT (z1)Up(z1)dz1 +

r4

4
pT

t V pt

− r2

2

∫ 0

−r

∫ t+z1

t−r
pT (z2)V p(z2)dz2dz1 (21)

LV4(t,pt ,x) = rϕT
t W ϕt −

∫ t

t−r
ϕ

T (z1)W ϕ(z1)dz1. (22)

By using lemma (5), (6) and (7) the integral term in (21)-(22) can be estimate that

−r
∫ t

t−r
pT (z1)Up(z1)dz1 ≤−


∫ t

t−r p(z1)dz1∫ 0
−r

∫ t+z1
t−r p(z2)dz2dz1∫ 0

−r
∫ t+z1

t−r
∫ t+z2

t−r p(z3)dz3dz2dz1


T

9U − 36
r U 60

r2 U
∗ 192

r2 U − 360
r3 U

∗ ∗ 720
r4 U




∫ t
t−r p(z1)dz1∫ 0

−r
∫ t+z1

t−r p(z2)dz2dz1∫ 0
−r

∫ t+z1
t−r

∫ t+z2
t−r p(z3)dz3dz2dz1

 , (23)

− r2

2

∫ 0

−r

∫ t+z1

t−r
pT (z2)V p(z2)dz2dz1 ≤−


∫ 0
−r

∫ t+z1
t−r p(z2)dz2dz1∫ 0

−r
∫ t+z1

t−r
∫ t+z2

t−r p(z3)dz3dz2dz1∫ 0
−r

∫ t+z1
t−r

∫ t+z2
t−r

∫ t+z3
t−r p(z4)dz4dz3dz2dz1


T

6V − 30
r V 60

r2 V
∗ 210

r2 V − 480
r3 V

∗ ∗ 1200
r4 V




∫ 0
−r

∫ t+z1
t−r p(z2)dz2dz1∫ 0

−r
∫ t+z1

t−r
∫ t+z2

t−r p(z3)dz3dz2dz1∫ 0
−r

∫ t+z1
t−r

∫ t+z2
t−r

∫ t+z3
t−r p(z4)dz4dz3dz2dz1

 , (24)

−
∫ t

t−r
ϕ

T (z1)W ϕ(z1)dz1 ≤
1
r

[∫ t

t−r
p(z1)dz1

]T

W
[∫ t

t−r
p(z1)dz1

]
. (25)
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From (9) and (14), we can get

tr{σT (t)Pxσ(t)} ≤ δxtr{σT (t)σ(t)}
≤ pT

t δxL1xpt + pT
r(t)δxL2xpr(t). (26)

For any constant matrix G1,G2 with suitable dimension, the subsequent condition holds,

2[ptG1 +ϕtG2]
T [−ϕt −Dxpt +Axgt +Bxgr(t)+ut ] = 0. (27)

In addition, from (4) the following inequalities can be obtained

(gt −∆1Wxpt)
T (gt −∆2Wxpt) ≤ 0, (28)

(gr(t)−∆1Wxpr(t))
T (gr(t)−∆2Wxpr(t)) ≤ 0. (29)

There exist positive diagonal matrices H1,H2, we have

0≤ −H1

[
Wxpt

gt

]T [
K1 −K2

∗ I

][
Wxpt

gt

]
, (30)

0≤ −H2

[
Wxpr(t)
gr(t)

]T [
K1 −K2

∗ I

][
Wxpr(t)
gr(t)

]
. (31)

where

K1 =
∆T

1 ∆2 +∆T
2 ∆1

2
, K2 =

∆T
1 +∆T

2
2

. (32)

Combining from (19)-(31), one can obtain

E{LV(t,pt ,x)−qT
t Qqt −2qT

t Sut −uT
t (R− γI )ut} ≤ 2pT

t Pxϕt + pT
t

( N

∑
y=1

πxyPy

)
pt + pT

t δxL1xpt

+ pT
r(t)δxL2xpr(t)+ pT

t Q pt − (1−µ)pT
r(t)Q pr(t)+ pT

t R pt −pT
r R pr+gT

t Sgt

− (1−µ)gT
r(t)Sgr(t)+ r2pT

t Upt −χ
T
1 (9U)χ1 +χ

T
1 (

36
r

U)χ2−χ
T
1 (

60
r2 U)χ3

−χ
T
2 (

192
r2 U)χ2 +χ

T
2 (

360
r3 U)χ3−χ

T
3 (

720
r4 U)χ3 +

r4

4
pT

t V pt −χ
T
2 (6V )χ2

+χ
T
2 (

30
r

V )χ3−χ
T
2 (

60
r2 V )χ4−χ

T
3 (

210
r2 V )χ3 +χ

T
3 (

480
r3 V )χ4−χ

T
4 (

1200
r4 V )χ4

+ rϕT
t W ϕt −ϕ

T
r(t)(

1
r

W )ϕr(t)−2pT
t (G1)ϕt −2pT

t (G1Dx)pt + 2pT
t (G1Ax)gt

+ 2pT
t (G1Bx)gr(t)+ 2pT

t (G1)ut −2ϕ
T
t (G2)ϕt −2pT

t (G2Dx)
T

ϕt + 2ϕ
T
t (G2Ax)gt

+ 2ϕ
T
t (G2Bx)gr(t)+ 2ϕ

T
t (G2)ut −pT

t (W T
x H1K1Wx)pt + pT

t (W T
x H1K2)gt

−gT
t (H1)gt −pT

r(t)(W
T

x H2K1Wx)pr(t)+ pT
r(t)(W

T
x H2K2)gr(t)

−gT
r(t)(H2)gr(t)−qT

t Qqt −2qT
t Sut −uT

t (R− γI )ut , (33)

which is equivalent to

E{LV(t,pt ,x)−qT
t Qqt −2qT

t Sut −uT
t (R− γI )ut} ≤ E{ξT

(t)Θξ(t)}. (34)
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where Θ are defined in (15) and ξ(t) defined in the main results.
Suppose Θ < 0, it is easy to get

E{qT
t Qqt −2qT

t Sut −uT
t Rut} ≥ E{LV(t,pt ,x)+ γuT

t ut}. (35)

Integrating (35) from 0 to td , under zero initial conditions we obtain

E{G(q,u, td)} ≥ E{γ〈u,u〉td +V(td ,p(td ),x)−V(0,p(0),x)} ≥ E{γ〈u,u〉td}, (36)

for all td ≥ 0. Therefore, the NNs (6) is strictly (Q,S,R)− γ− dissipative in the sense of Definition (2). This
completes the proof �

Remark 10. It ought to be mentioned that the network models are normally affected by stochastic disturbance.
Therefore, numerous researchers have taken different types of NNs to the investigation of the stability with
stochastic inputs. For example, local-field NNs [12], Cohen-Grossberg NNs [? ], Markovian switching static
NNs [13]. From the above conversation, it is easy to realize, without considering the generalized NNs, some
stability results have been discussed in [12]-[13]. Its should be noted that the proposed problem in this paper
has been considered a general form of the system model. Therefore, the results obtained in this literature is more
general than [12]-[13].

Remark 11. It ought to be specified that the (Q,S,R)− γ− dissipativity contains multi-dynamic behaviors by
setting the weight matrices in their structure. For example, choose Q = 0,S = I and R = 2γI , then (10) turns to
the following passivity condition 2E{〈q,Su〉td} ≥ −γE{〈u,u〉td}.

Corollary 12. For given scalars r and µ, the NNs (6) is passive, if there exist matrices Px(x ∈ S) > 0,Q >

0,R > 0,S > 0,U > 0, diagonal matrices H1 > 0,H2 > 0, any matrices G1,G2 and scalar γ > 0 such that the
following LMIs holds for all (x ∈ S):

Px ≤ δxI , (37)

Θ2 = (Θ̄i, j)12×12 < 0, (38)

where

Θ̄1,1,x ,
N
∑

y=1
πxyPy + Q + R + r2U + r4

4 V + δxL1x − G1Dx − (G1Dx)T − H1W T
x K1Wx, Θ̄1,2,x ,

Px − G1 − (G2Dx)T , Θ̄1,5,x , G1Ax + H1W T
x K2, Θ̄1,6,x , G1Bx, Θ̄1,12,x , Px + G1, Θ̄2,2,x ,

rW −G2−GT
2 , Θ̄2,5,x , G2Ax, Θ̄2,6,x , G2Bx, Θ̄2,12,x , G2, Θ̄3,3,x , −(1−µ)Q + δxL2x−H2W T

x K1Wx,
Θ̄3,6,x , H2W T

x K2, Θ̄4,4,x , −R , Θ̄5,5,x , S −H1, Θ̄5,12,x , −I , Θ̄6,6,x , −(1− µ)S −H2, Θ̄7,7,x ,
− 1

rW , Θ̄8,8,x , −9U, Θ̄8,9,x , 36
r U, Θ̄8,10,x , − 60

r2 U, Θ̄9,9,x , − 192
r2 U − 6V , Θ̄9,10,x , 360

r3 U +
30
r V , Θ̄9,11,x , − 60

r2 V , Θ̄10,10,x , − 720
r4 U− 210

r2 V , Θ̄10,11,x , 480
r3 V , Θ̄11,11,x , − 1200

r4 V , Θ̄12,12,x , −γI .

Proof: Consider the similar LKF (16) and define the following passivity condition for the system
(6).

2
∫ td

0
E{qT

t ut}dt ≥−γ

∫ td

0
E{uT

t ut}dt. (39)

The following proof can be obtained by Theorem (9), we get

E{LV(t,pt ,x)−2qT
t ut −uT

t γut} ≤ E{ξT
(t)Θ̄ξ(t)}. (40)

Hence Θ̄ < 0 holds, then (40) implies that

E{LV(t,pt ,x)−2qT
t ut −uT

t γut} ≤ 0. (41)
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Integrating (41) from 0 to td , under zero initial conditions we obtain

2
∫ td

0
E{qT

t ut}dt ≥ E{V(td ,p(td ),x)−V(0,p(0),x)−
∫ td

0
uT

t (γI )utdt}

≥ −
∫ td

0
E{uT

t (γI )utdt} (42)

for all td ≥ 0. Therefore, the NNs (6) is passive in the sense of Definition (4). This completes the proof �

Remark 13. When we consider ut = 0, then NNs (6) turns to
dp(t) = [−Dxp(t)+Axg(Wxp(t))+Bxg(Wxp(t− r(t)))]dt

+σ(t,x,p(t),p(t− r(t)))dω(t)
q(t) = g(Wxp(t)).

(43)

Based on Theorem (9), the following Corollary (14) can be obtained.

Corollary 14. For given scalars r and µ, the NNs (43) is globally asymptotically stable in the mean square, if
there exist matrices Px(x ∈ S)> 0,Q > 0,R > 0,S > 0,U > 0, diagonal matrices H1 > 0,H2 > 0, any matrices
G1,G2 such that the following LMIs holds for all (x ∈ S):

Px ≤ δxI , (44)

Θ3 = (Θ̆i, j)11×11 < 0, (45)

where

Θ̆1,1,x ,
N
∑

y=1
πxyPy + Q + R + r2U + r4

4 V + δxL1x − G1Dx − (G1Dx)T − H1W T
x K1Wx, Θ̆1,2,x ,

Px − G1 − (G2Dx)T , Θ̆1,5,x , G1Ax + H1W T
x K2, Θ̆1,6,x , G1Bx, Θ̆2,2,x , rW − G2 − GT

2 , Θ̆2,5,x ,
G2Ax, Θ̆2,6,x , G2Bx, Θ̆3,3,x , −(1 − µ)Q + δxL2x − H2W T

x K1Wx, Θ̆3,6,x , H2W T
x K2, Θ̆4,4,x ,

−R , Θ̆5,5,x , S − H1, Θ̆6,6,x , −(1− µ)S − H2, Θ̆7,7,x , − 1
rW , Θ̆8,8,x , −9U, Θ̆8,9,x , 36

r U,
Θ̆8,10,x , − 60

r2 U, Θ̆9,9,x , − 192
r2 U − 6V , Θ̆9,10,x , 360

r3 U + 30
r V , Θ̆9,11,x , − 60

r2 V , Θ̆10,10,x ,

− 720
r4 U− 210

r2 V , Θ̆10,11,x , 480
r3 V , Θ̆11,11,x , − 1200

r4 V .

Remark 15. Suppose there has no stochastic disturbance and ut = 0, then NNs (6) turns to{
dp(t) = [−Dxp(t)+Axg(Wxp(t))+Bxg(Wxp(t− r(t)))]dt
q(t) = g(Wxp(t)).

(46)

Based on Theorem (9), the following Corollary (16) can be obtained.

Corollary 16. For given scalars r and µ, the NNs (46) is globally asymptotically stable, if there exist matrices
Px(x ∈ S) > 0,Q > 0,R > 0,S > 0,U > 0, diagonal matrices H1 > 0,H2 > 0, any matrices G1,G2 such that
the following LMIs holds for all (x ∈ S):

Θ4 = (Θ̃i, j)11×11 < 0, (47)

where

Θ̃1,1,x ,
N
∑

y=1
πxyPy + Q + R + r2U + r4

4 V + δxL1x − G1Dx − (G1Dx)T − H1W T
x K1Wx, Θ̃1,2,x ,

Px − G1 − (G2Dx)T , Θ̃1,5,x , G1Ax + H1W T
x K2, Θ̃1,6,x , G1Bx, Θ̃2,2,x , rW − G2 − GT

2 , Θ̃2,5,x ,
G2Ax, Θ̃2,6,x , G2Bx, Θ̃3,3,x , −(1 − µ)Q + δxL2x − H2W T

x K1Wx, Θ̃3,6,x , H2W T
x K2, Θ̃4,4,x ,

−R , Θ̃5,5,x , S − H1, Θ̃6,6,x , −(1− µ)S − H2, Θ̃7,7,x , − 1
rW , Θ̃8,8,x , −9U, Θ̃8,9,x , 36

r U,
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Θ̃8,10,x , − 60
r2 U, Θ̃9,9,x , − 192

r2 U − 6V , Θ̃9,10,x , 360
r3 U + 30

r V , Θ̃9,11,x , − 60
r2 V , Θ̃10,10,x ,

− 720
r4 U− 210

r2 V , Θ̃10,11,x , 480
r3 V , Θ̃11,11,x , − 1200

r4 V .

3.2. Robust dissipativity analysis

In this subsection, we extend the previous dissipativity condition to robust dissipativity analysis of the
following uncertain NNs:

dp(t) = [−(Dx +∆Dx(t))p(t)+ (Ax +∆Ax(t))g(Wxp(t))+ (Bx +∆Bx(t))g(Wxp(t− r(t)))
+u(t)]dt +σ(t,x,p(t),p(t− r(t)))dω(t)

q(t) = g(Wxp(t)).
(48)

where ∆Dx(t),∆Dx(t) and ∆Dx(t) are the time-varying parameter uncertainties, which are assumed to be of the
form

[∆Dx(t) ∆Ax(t) ∆Bx(t)] = HxFx(t)[E1x E2x E3x], (49)

where H ,E1x,E2x and E3x are known real constant matrices, and Fx(t) is an unknown time-varying matrix
function satisfying Fx(t)T Fx(t) ≤ I.
Based on Theorem (9) the following Theorem (17) can be derived.

Theorem 17. For given scalars r and µ, the NNs (48) is (Q,S,R)− γ dissipative, if there exist matrices
Px(x ∈ S) > 0,Q > 0,R > 0,S > 0,U > 0, diagonal matrices H1 > 0,H2 > 0, any matrices G1,G2 and scalar
γ > 0 such that the following LMIs holds for all (x ∈ S):

Px ≤ δxI , (50)

Θ5 =

Θ̂ Γ1 εΓ2

z −εI 0
z z −εI

< 0. (51)

where

Θ̂1,1,x ,
N
∑

y=1
πxyPy + Q + R + r2U + r4

4 V + δxL1x − G1Dx − (G1Dx)T − H1W T
x K1Wx, Θ̂1,2,x ,

Px − G1 − (G2Dx)T , Θ̂1,5,x , G1Ax + H1W T
x K2, Θ̂1,6,x , G1Bx, Θ̂1,12,x , Px + G1, Θ̂2,2,x ,

rW −G2−GT
2 , Θ̂2,5,x , G2Ax, Θ̂2,6,x , G2Bx, Θ̂2,12,x , G2, Θ̂3,3,x , −(1−µ)Q + δxL2x−H2W T

x K1Wx,
Θ̂3,6,x , H2W T

x K2, Θ̂4,4,x , −R , Θ̂5,5,x , S − H1 − Q, Θ̂5,12,x , −S, Θ̂6,6,x , −(1 − µ)S −
H2, Θ̂7,7,x , − 1

rW , Θ̂8,8,x , −9U, Θ̂8,9,x , 36
r U, Θ̂8,10,x , − 60

r2 U, Θ̂9,9,x , − 192
r2 U − 6V ,

Θ̂9,10,x , 360
r3 U + 30

r V , Θ̂9,11,x , − 60
r2 V , Θ̂10,10,x , − 720

r4 U− 210
r2 V , Θ̂10,11,x , 480

r3 V , Θ̂11,11,x , − 1200
r4 V ,

Θ̂12,12,x , −R+ γI . Γ1 = [GT
1xH T

x GT
2xH T

x 0 0 0 0 0 0 0 0 0 0]T ,
Γ2 = [ET

1x 0 0 0 ET
2x ET

3x 0 0 0 0 0 0]T .

Proof: Replacing Dx,Ax,Bx, in LMI (15) with (Dx +∆Dx(t)), (Ax +∆Ax(t)), (Bx +∆Bx(t)) yields

Θ̂+(Γ1F (t)Γ2)+ (Γ1F (t)Γ2)
T < 0. (52)

By using Lemma (8) there exists a scalar ε > 0, such that

Θ̂+ ε
−1Γ1ΓT

1 + εΓT
2 Γ2 < 0. (53)
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where

Γ1 = [GT
1xH T

x GT
2xH T

x 0 0 0 0 0 0 0 0 0 0]T ,

Γ2 = [ET
1x 0 0 0 ET

2x ET
3x 0 0 0 0 0 0]T .

By Schur complement lemma, inequality (53) is equivalent to inequalities (51). It completes the proof.

4. Illustrative examples

In this section, three numerical examples and their simulations are presented to illustrate the effectiveness
of the obtained results.

Example 1. Consider the NNs (6) with the following two modes:

D1 =

[
2.3 0
0 0.9

]
, A1 =

[
0.3 0.2
0.3 −0.2

]
, B1 =

[
0.2 −0.3
0.4 0.2

]
,

W1 =

[
1 0
0 1

]
, L11 =

[
0.22 0

0 0.22

]
, L21 =

[
0.18 0

0 0.18

]
,

D2 =

[
1.9 0
0 2

]
, A2 =

[
0.3 0.5
−0.2 0.1

]
, B2 =

[
0.3 0.2
−0.3 0.5

]
,

W2 =

[
1 0
0 1

]
, L12 =

[
0.20 0

0 0.20

]
, L22 =

[
0.12 0

0 0.12

]
.

Moreover we take,

Q =

[
−7 0
0 −7

]
, S =

[
0.1 −0.1
−0.1 0.5

]
, R =

[
12 0
0 12

]
.

Let Π =

[
−3 3
2 −2

]
and r(t) = 0.2 + 0.1sint which satisfies r = 0.3, µ = 0.2. Further, choose

gi(pi(t)) = tanh(pi(t)), i = 1,2, then we can get ∆1 = 0, ∆2 = I , from (32) we have K1 = 0, K2 = −0.5I .
LMIs (14)-(15) can be solved by MATLAB. The initial values are chosen as p(0) = [0.3,−0.6]T , when taking
u(t) = 0.01e−tsin(0.02t) t > 0, the following simulation results can be obtained. Figure 1 shows that time
responses of the system (6), Figure 2 depicts the transient response of state of the system (6) and Figure 3
describes the Markovian switching signal.
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Figure 1. Time responses of the NNs (6) in Example 1.
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Figure 2. Transient response of state variables p1(t), p2(t) in Example 1.
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Figure 3. Markovian switching signal e(t) in Example 1.
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Example 2. Consider the GNNs (46) with x = 1 and the following parameters:

A =


−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3894 −0.5785
−0.1311 0.3253 −0.9534 −0.5015

 , B =


0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428
−2.0413 0.5179 1.1734 −0.2775

 ,

D = diag{1.2769,0.6231,0.9230,0.4480}, W = diag{1,1,1,1}.

Take gi(pi(t)) = 0.3 tanh(pi(t)), i = 1,2,3,4, then we can get ∆1 = 0, ∆2 = diag{0.1137,
0.1279,0.7994,0.2368}, from (32) we have K1 = 0, K2 = diag{− 0.1137

2 ,− 0.1279
2 ,− 0.7994

2 ,− 0.2368
2 }. LMI (47)

can be solved by MATLAB. For various µ, the maximum permissible delay limit r is listed in Table 1. From
Table 1, it is easy to realize that the obtained result in this paper is less conservative than those results discussed
in [34], [35], [36]. For the simulation purpose, take r(t) = 2.6272+ 0.2sint which satisfies r= 2.8272. Under
the initial conditions p(0) = [1.5,1,−1.6,0.5]T the following simulation can be obtained. The time responses
of the NNs (46) with x = 1 is given in Figure 4. According to the Corollary (16) the GNNs (46) is globally
asymptotically stable.

Table 1: The maximum permissible delay limit r for different µ.
Methods µ 0.1 0.5 0.9

[34] r 3.8739 2.7821 2.3279
[35] r 4.1903 3.0779 2.8268
[36] r 4.1919 3.0790 2.8271

Corollary (16) r 4.1920 3.0791 2.8272
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Figure 4. Time responses of the GNNs (46) in Example 2.
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Example 3. Consider the NNs (48) with the following two modes:

D1 =

[
2.3 0
0 0.9

]
, A1 =

[
0.3 0.2
0.3 −0.2

]
, B1 =

[
0.2 −0.3
0.4 0.2

]
, W1 =

[
1 0
0 1

]
,

L11 =

[
0.22 0

0 0.22

]
, L21 =

[
0.18 0

0 0.18

]
, H1 =

[
0.2 0
0 0.2

]
,

E11 =

[
0.3 0
0 0.3

]
, E21 =

[
0.2 0
0 0.2

]
, E31 =

[
0.1 0
0 0.1

]
,

D2 =

[
1.9 0
0 2

]
, A2 =

[
0.3 0.5
−0.2 0.1

]
, B2 =

[
0.3 0.2
−0.3 0.5

]
, W2 =

[
1 0
0 1

]
,

L12 =

[
0.20 0

0 0.20

]
, L22 =

[
0.12 0

0 0.12

]
, H2 =

[
0.2 0
0 0.2

]
,

E12 =

[
0.3 0
0 0.3

]
, E22 =

[
0.2 0
0 0.2

]
, E32 =

[
0.1 0
0 0.1

]
,

Moreover we take,

Q =

[
−1 0
0 −1

]
, S =

[
1 0
1 1

]
, R =

[
3 0
0 3

]
.

Let Π =

[
−3 3
2 −2

]
and r(t) = 0.2 + 0.1sint which satisfies r = 0.3, µ = 0.2. Further, choose

gi(pi(t)) = tanh(pi(t)), i = 1,2, then we can get ∆1 = 0, ∆2 = I , from (32) we have K1 = 0, K2 = −0.5I .
LMIs (50)-(51) can be solved by MATLAB. The initial values are chosen as p(0) = [0.3,−0.6]T , when taking
u(t) = 0.01e−tsin(0.02t) t > 0, the following simulation results can be obtained. Figure 5 shows that time
responses of the system (48), Figure 6 depicts the state of the system (48) under given initial values and and
Figure 7 describes the Markovian switching signal.
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Figure 5. Time responses of the NNs (48) in Example 3.
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Figure 6. Transient response of state variables p1(t), p2(t) in Example 3.
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Figure 7. Markovian switching signal e(t) in Example 3.

5. Conclusion

In this article, the problem of dissipativity and stability of USGNNs with Markovian jumping parameters
has been investigated. In order to handle this problem easily, an appropriate LKF is constructed and by employing
effective integral inequalities, sector bound activation function, Itô’s formula and some analytical techniques,
several LMI-based sufficient conditions are derived, whose feasible solution can be verified by MATLAB. Finally,
three numerical examples and their simulations are discussed to demonstrate the feasibility and effectiveness of
the obtained analytical results. Moreover, it is possible to investigate include the stability and synchronization
analysis of various NNs including complex-valued NNs. Thus, in the future work, we will extend the present
results to the investigations of stability and synchronization analysis of stochastic complex-valued discrete-time
NNs. This will occur in the near future.
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