Preprint
Article

This version is not peer-reviewed.

Prevention of Unintended Appearance in Photos Based on Human Behaviors Analysis

A peer-reviewed article of this preprint also exists.

Submitted:

24 March 2020

Posted:

25 March 2020

Read the latest preprint version here

Abstract
Many people can take photos with smartphones and easily post photos via SNS (Social Network Services). This has caused a social problem that unintended appearance in photos may threaten the privacy of photographed persons. For this issue, numerous studies have already been introduced to prevent the unintended appearance in photos from the photographer’s side, but only a few methods tackled this from the photographed person's side. Therefore, we considered calling attention to a situation that a photo-taking behavior by a photographer can be automatically detected by using a wearable camera worn by a photographed person. In this paper, we propose an approach to detect photo-taking behaviors in video data taken from the wearable camera, analyzing specific human skeleton information. OpenPose is utilized to obtain the human’s skeleton information and the time-series data are analyzed. In addition, we compare two similar behaviors which are photo-taking behaviors and net-surfing behaviors. These video data are distinguished by DP matching and cross-validation. Finally, it is concluded that the detection accuracy of photo-taking behaviors is about 92.5%, which is satisfactory enough for this research purpose.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated