Preprint Concept Paper Version 1 This version is not peer-reviewed

Direct Ink Writing Glass: A Preliminary Step for Optical Application

Version 1 : Received: 9 March 2020 / Approved: 10 March 2020 / Online: 10 March 2020 (11:18:45 CET)

A peer-reviewed article of this Preprint also exists.

Nan, B.; Gołębiewski, P.; Buczyński, R.; Galindo-Rosales, F.J.; Ferreira, J.M.F. Direct Ink Writing Glass: A Preliminary Step for Optical Application. Materials 2020, 13, 1636. Nan, B.; Gołębiewski, P.; Buczyński, R.; Galindo-Rosales, F.J.; Ferreira, J.M.F. Direct Ink Writing Glass: A Preliminary Step for Optical Application. Materials 2020, 13, 1636.

Journal reference: Materials 2020, 13, 1636
DOI: 10.3390/ma13071636

Abstract

In this paper, we present a preliminary study and conceptual idea concerning 3D printing water-sensitive glass by exemplifying with a borosilicate glass with high alkali and alkaline oxide contents using direct ink writing. The investigated material was prepared in the form of a glass frit, which was further ground in order to obtain a fine powder of desired particle size distribution. In a following step, inks were prepared by mixing the fine glass powder with Pluoronic F-127 hydrogel. The acquired pastes were rheologically characterized and printed using a Robocasting device. DSC experiments were performed for base materials and the obtained green bodies. After sintering, SEM and XRD analyses were carried out in order to examine microstructure and the eventual presence of crystalline phase inclusions. Results confirmed that obtained inks exhibit stable rheological properties despite the propensity of glass to undergo hydrolysis and could be adjusted to desirable values for 3D printing. No additional phase was observed, supporting the suitability of the designed technology for the production of water sensitive glass inks. SEM micrographs of the sintered samples revealed the presence of closed porosity, which may be the main reason of light scattering.

Subject Areas

direct ink writing; glass; rheology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.