Preprint
Article

This version is not peer-reviewed.

Hybrid Vesicle Stability under Sterilisation and Preservation Processes Used in the Manufacture of Medicinal Formulations

A peer-reviewed article of this preprint also exists.

Submitted:

06 March 2020

Posted:

08 March 2020

You are already at the latest version

Abstract
Sterilisation and preservation of vesicle formulations are an important consideration for their viable manufacture for industry applications, particular those intended for medicinal use. Here we undertake an initial investigation of the stability of hybrid lipid – block copolymer vesicles to common sterilisation and preservation processes, with particular interest in how the block copolymer component might tune vesicle stability. We investigate two sizes of polybutadiene-block-poly(ethylene oxide) polymers (PBd12-PEO11 and PBd22-PEO14) mixed with the phospholipid POPC considering the encapsulation stability of a fluorescent cargo and the colloidal stability of vesicle size distributions. We find that autoclaving and lyophilisation cause complete loss of encapsulation stability under the conditions studied here. Filtering through 200 nm pores appears to be viable for sterilisation for all vesicle compositions with comparatively low release of encapsulated cargo, even for vesicle size distributions which extend beyond the 200 nm filter pore size. Freeze-thaw of vesicles also shows promise for preservation of hybrid vesicles with high block copolymer content. We discuss the process stability of hybrid vesicles in terms of the complex mechanical interplay between bending resistance, stretching elasticity and lysis strain of these membranes and propose strategies for future work to further enhance the process stability of these vesicle formulations.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated