Preprint
Article

This version is not peer-reviewed.

Multi-Stage Meta-Learning for Few-Shot with Lie Group Network Constraint

A peer-reviewed article of this preprint also exists.

Submitted:

02 March 2020

Posted:

03 March 2020

You are already at the latest version

Abstract
Deep learning has achieved lots of successes in many fields, but when trainable sample are extremely limited, deep learning often under or overfitting to few samples. Meta-learning was proposed to solve difficulties in few-shot learning and fast adaptive areas. Meta-learner learns to remember some common knowledge by training on large scale tasks sampled from a certain data distribution to equip generalization when facing unseen new tasks. Due to the limitation of samples, most approaches only use shallow neural network to avoid overfitting and reduce the difficulty of training process, that causes the waste of many extra information when adapting to unseen tasks. Euclidean space-based gradient descent also make meta-learner's update inaccurate. These issues cause many meta-learning model hard to extract feature from samples and update network parameters. In this paper, we propose a novel method by using multi-stage joint training approach to post the bottleneck during adapting process. To accelerate adapt procedure, we also constraint network to Stiefel manifold, thus meta-learner could perform more stable gradient descent in limited steps. Experiment on mini-ImageNet shows that our method reaches better accuracy under 5-way 1-shot and 5-way 5-shot conditions.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated