Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Advances in the Definition of Needs and Specifications for a Climate Service Tool Aimed at Small Hydropower Plants Operation and Management

Version 1 : Received: 27 February 2020 / Approved: 28 February 2020 / Online: 28 February 2020 (12:15:43 CET)

A peer-reviewed article of this Preprint also exists.

Contreras, E.; Herrero, J.; Crochemore, L.; Pechlivanidis, I.; Photiadou, C.; Aguilar, C.; Polo, M.J. Advances in the Definition of Needs and Specifications for a Climate Service Tool Aimed at Small Hydropower Plants’ Operation and Management. Energies 2020, 13, 1827. Contreras, E.; Herrero, J.; Crochemore, L.; Pechlivanidis, I.; Photiadou, C.; Aguilar, C.; Polo, M.J. Advances in the Definition of Needs and Specifications for a Climate Service Tool Aimed at Small Hydropower Plants’ Operation and Management. Energies 2020, 13, 1827.

Journal reference: Energies 2020, 13, 1827
DOI: 10.3390/en13071827

Abstract

The operation feasibility of small hydropower plants in mountainous sites is subjected to the run-of-river flow which is also depending on a high variability in precipitation and snow cover. Moreover, the management of this kind of systems has to be performed with some particular operation conditions of the plant (e.g. turbine minimum and maximum discharge) but also some environmental flow requirements. In this context, a technological climate service is conceived in tight connection with end users, perfectly answering the needs of the management of small hydropower systems in a pilot area, and providing forecast of river streamflow together with other operation data. This paper presents an overview of the service but also a set of lessons learnt related to features, requirements and considerations to bear in mind from the point of view of climate services developers. In addition, the outcomes give insight into how this kind of services could change the traditional management (normally based on the past experience), providing a probability range of future river flow based on future weather scenarios according to the range of future weather possibilities. This highlights the utility of the co-generation process to implement climate services for water and energy fields but also that seasonal climate forecast could improve the business as usual of this kind of facilities.

Subject Areas

small hydropower plant; river flow; seasonal forecast; energy production

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.