Preprint Article Version 1 This version is not peer-reviewed

Label-free, High-throughput Assay of Human Dendritic Cells from Whole-blood Samples with Microfluidic Inertial Separation Suitable for Resource-limited Manufacturing

Version 1 : Received: 27 February 2020 / Approved: 28 February 2020 / Online: 28 February 2020 (11:54:44 CET)

A peer-reviewed article of this Preprint also exists.

Caffiyar, M.Y.; Lim, K.P.; Basha, I.H.K.; Hamid, N.H.; Cheong, S.C.; Ho, E.T.W. Label-Free, High-Throughput Assay of Human Dendritic Cells from Whole-Blood Samples with Microfluidic Inertial Separation Suitable for Resource-Limited Manufacturing. Micromachines 2020, 11, 514. Caffiyar, M.Y.; Lim, K.P.; Basha, I.H.K.; Hamid, N.H.; Cheong, S.C.; Ho, E.T.W. Label-Free, High-Throughput Assay of Human Dendritic Cells from Whole-Blood Samples with Microfluidic Inertial Separation Suitable for Resource-Limited Manufacturing. Micromachines 2020, 11, 514.

Journal reference: Micromachines 2020, 11, 514
DOI: 10.3390/mi11050514

Abstract

Microfluidics technology has not impacted the delivery and accessibility of point of care health services like diagnosis of infectious disease diagnosis, monitoring health or delivering interventions. Most microfluidics prototypes from academic research are not easy to manufacture with industrial scale fabrication techniques and cannot be operated without complex manipulations of supporting equipment and additives such as labels or reagents. We propose a label- and reagent-free inertial spiral microfluidic device to separate red blood, white blood and dendritic cells from blood fluid for applications in health monitoring and immunotherapy. We demonstrate that using larger channel widths in the range of 200 to 600 µm allows separation of cells into multiple streams according to different size ranges and we utilize a novel technique to collect the closely separated focused cell streams without constricting the channel. When tested on actual human blood cells, 77% of dendritic cells were separated and 80% of cells remained viable after our assay. Our contribution is a method to adapt spiral inertial microfluidic designs to separate more than two cell types in the same device which is robust against clogging, simple to operate and suitable for fabrication and deployment in resource-limited populations.

Subject Areas

inertial spiral microfluidics; dendritic cell separation; resource-limited microfluidics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.