Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Estimation of Temperature Recovery Distance and the Influence of Heat Pump Discharge on Fluvial Ecosystems

Version 1 : Received: 25 February 2020 / Approved: 26 February 2020 / Online: 26 February 2020 (02:58:42 CET)

A peer-reviewed article of this Preprint also exists.

Jung, J.; Nam, J.; Kim, J.; Bae, Y.H.; Kim, H.S. Estimation of Temperature Recovery Distance and the Influence of Heat Pump Discharge on Fluvial Ecosystems. Water 2020, 12, 949. Jung, J.; Nam, J.; Kim, J.; Bae, Y.H.; Kim, H.S. Estimation of Temperature Recovery Distance and the Influence of Heat Pump Discharge on Fluvial Ecosystems. Water 2020, 12, 949.

Abstract

Temperature differences between the atmosphere and river water allow rivers to be used as a hydrothermal energy source. The river-water heat pump system is a relatively non-invasive renewable energy source; however, effluent discharged from the heat pump can cause downstream temperature changes which may impact sensitive fluvial ecosystems. In this study, the water temperature recovery distance of the effluent was estimated for a river section in the Han River Basin, Korea, using the heat transfer equation and the Environmental Fluid Dynamic Code (EFDC) model. Results showed that, compared to the EFDC model, the heat transfer equation tended to overestimate the water temperature recovery distance due to its simplified assumptions. The water temperature recovery distance could also be used as an objective indicator to decide the reuse of downstream river water. Furthermore, as the river system was found to support an endangered fish species that is sensitive to water environment changes, care should be taken to exclude the habitats of protected species affected by water temperatures within water temperature recovery distance.

Keywords

hydrothermal energy; river-water heat pump; water temperature recovery distance; heat transfer equation; Environmental Fluid Dynamic Code (EFDC); Han river basin

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.