Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Structural Identification of the Electrostatic Hot Spots for Severe Acute Respiratory Syndrome Coronavirus Spike Protein to Be Complexed with Its Receptor ACE2 and Its Neutralizing Antibodies

* ORCID logo
Version 1 : Received: 17 February 2020 / Approved: 18 February 2020 / Online: 18 February 2020 (11:03:10 CET)

How to cite: Li, W. Structural Identification of the Electrostatic Hot Spots for Severe Acute Respiratory Syndrome Coronavirus Spike Protein to Be Complexed with Its Receptor ACE2 and Its Neutralizing Antibodies. Preprints 2020, 2020020265. https://doi.org/10.20944/preprints202002.0265.v1 Li, W. Structural Identification of the Electrostatic Hot Spots for Severe Acute Respiratory Syndrome Coronavirus Spike Protein to Be Complexed with Its Receptor ACE2 and Its Neutralizing Antibodies. Preprints 2020, 2020020265. https://doi.org/10.20944/preprints202002.0265.v1

Abstract

The spike protein of SARS coronavirus (SARS-CoV) attaches the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2), which is mediated by the receptor binding domain (RBD) of the spike protein. Recently, an analysis based on decade-long structural studies of SARS was reported to illustrate with atomic-level details receptor recognition by the novel coronavirus from Wuhan, i.e., 2019-nCoV. Here, this article reports a comprehensive set of structural electrostatic analysis of all SARS-CoV spike protein RBD-related structures as of February 13, 2020, aiming at identifying the electrostatic hot spots for SARS-CoV spike protein to be complexed with ACE2 and its neutralizing antibodies. First, this article identified a structural action mechanism of the F26G19 antibody (of SARS-CoV spike protein), where its Asp56 residue binds to the Arg426 of the SARS-CoV spike protein RBD against the formation of the interfacial Arg426-Glu329 salt bridges between ACE2 and the SARS-CoV spike protein RBD. Second, a hypothesis is reported that a pair of electrostatic clips exist at the interface between ACE2 and the SARS-CoV spike protein RBD, including both Arg426-Glu329 and His445-Glu23-Lys447 salt bridges. Last, this article reports a structurally identified interfacial Glu35-Arg479 salt bridge which helps stabilize the complex structure of ACE2 and the SARS-CoV spike protein RBD. Overall, the structurally identified electrostatic hot spots reported here may be useful for the design of SARS-CoV-neutralizing antibodies in future.

Keywords

SARS-CoV; Spike protein; Electrostatic hot spots; Angiotensin-converting enzyme 2 (ACE2); Neutralizing antibody

Subject

Medicine and Pharmacology, Pulmonary and Respiratory Medicine

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.