In computational neuroscience, spiking neurons are often analyzed as computing devices that register bits of information, with each action potential carrying at most one bit of Shannon entropy. Here, I question this interpretation by using Landauer's principle to estimate an upper limit for the quantity of thermodynamic information that can be dissipated by a single action potential in a typical mammalian neuron. I show that an action potential in a typical mammalian cortical pyramidal cell can carry up to approximately 3.4e11 natural units of thermodynamic information, or about 4.9e11 bits of Shannon entropy. This result suggests that an action potential can process much more information than a single bit of Shannon entropy.
Keywords:
Subject: Biology and Life Sciences - Biophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.