Preprint
Review

This version is not peer-reviewed.

Direct Electron Transfer-type Bioelectrocatalysis of Redox Enzymes at Nanostructured Electrodes

A peer-reviewed article of this preprint also exists.

Submitted:

03 February 2020

Posted:

03 February 2020

You are already at the latest version

Abstract
Direct electron transfer (DET)-type bioelectrocatalysis, which couples electrode reactions and catalytic functions of redox enzymes without any redox mediator, is one of the most intriguing subjects studied over the past decades in the field of bioelectrochemistry. In order to realize the DET-type bioelectrocatalysis and to improve the performance, nanostructures of the electrode surface have to be carefully tuned for each enzyme. In addition, enzymes can also be tuned by protein engineering approach for the DET-type reaction. This review summarizes the resent progresses in this field of the research, while taking into consideration of the importance of nanostructure of electrodes as well as redox enzymes. Described are basic concepts and theoretical aspects of DET-type bioelectrocatalysis, significance of nanostructures as scaffolds for DET-type reactions, protein engineering approached for DET-type reactions, and concepts and facts of bidirectional DET-type reactions, from a cross-disciplinary viewpoint.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated