Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Effects of Multi-pass Friction Stir Processing on Microstructures and Mechanical Properties of 1060Al/Q235 Explosive Composite Plate

Version 1 : Received: 28 January 2020 / Approved: 29 January 2020 / Online: 29 January 2020 (12:01:42 CET)

A peer-reviewed article of this Preprint also exists.

Wang, J.; Cheng, Y.; Li, B.; Chen, C. Effects of Multi-Pass Friction Stir Processing on Microstructures and Mechanical Properties of the 1060Al/Q235 Composite Plate. Metals 2020, 10, 298. Wang, J.; Cheng, Y.; Li, B.; Chen, C. Effects of Multi-Pass Friction Stir Processing on Microstructures and Mechanical Properties of the 1060Al/Q235 Composite Plate. Metals 2020, 10, 298.

Abstract

There always exist steel cuttings, holes and cracks at the interfaces in the explosive composite plate. Multi-pass friction stir processing (M-FSP) is proposed in this research to optimize the interface microstructure and the interface connection for 1060Al/Q235 explosive composite plate. Results show that the microstructures of 1060Al after M-FSP are fine and uniform owing to the strong stirring effect and recrystallization. Micro-defects formed by the explosive welding can be repaired by the M-FSP. However, M-FSP can also form tunnel defects in the aluminum, especially when the passes are one and two. The melting block and the melting lump in the composite plates are easy to become source of crack. The shear strengths and the bending properties for the 1060Al/Q235 explosive composite plate after M-FSP are the best when the passes are three, with the tool rotation speed of 1200rpm and the forward speed of 60mm/min. The optimized interfaces for the explosive composite plate after M-FSP are mainly by the metallurgical bondings, with a certain thickness and are discontinuous. Therefore, the crack extension stress is the largest and the mechanical properties are the best.

Keywords

friction stir processing; aluminum/steel explosive composite plate; multi-pass; bonding interface; mechanical properties

Subject

Chemistry and Materials Science, Metals, Alloys and Metallurgy

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.