Preprint
Article

This version is not peer-reviewed.

Conventional Data Science Techniques to Bioinformatics and Utilizing a Grid Computing Approach to Computational Medicine

Submitted:

21 January 2020

Posted:

24 January 2020

You are already at the latest version

Abstract
Conventional data visualization software have greatly improved the efficiency of the mining and visualization of biomedical data. However, when one applies a grid computing approach the efficiency and complexity of such visualization allows for a hypothetical increase in research opportunities. This paper will present data visualization examples presented in conventional networks, then go into higher details about more complex techniques related to leveraging parallel processing architecture. Part of these complex techniques include the attempt to build a basic general adversarial network (GAN) in order to increase the statistical pool of biomedical data for analysis as well as an introduction to the project utilizing the decentralized-internet SDK. This paper is meant to show you said conventional examples then go into details about the deeper experimentation and self contained results.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated