Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A Mathematical Model of the Transition from the Normal Hematopoiesis to the Chronic and Accelerated Acute Stages in Myeloid Leukemia

Version 1 : Received: 20 January 2020 / Approved: 21 January 2020 / Online: 21 January 2020 (10:16:33 CET)

A peer-reviewed article of this Preprint also exists.

Parajdi, L.G.; Precup, R.; Bonci, E.A.; Tomuleasa, C. A Mathematical Model of the Transition from Normal Hematopoiesis to the Chronic and Accelerated-Acute Stages in Myeloid Leukemia. Mathematics 2020, 8, 376. Parajdi, L.G.; Precup, R.; Bonci, E.A.; Tomuleasa, C. A Mathematical Model of the Transition from Normal Hematopoiesis to the Chronic and Accelerated-Acute Stages in Myeloid Leukemia. Mathematics 2020, 8, 376.

Abstract

A mathematical model given by a two - dimensional differential system is introduced in order to understand the transition process from the normal hematopoiesis to the chronic and accelerated acute stages in chronic myeloid leukemia. A previous model of Dingli and Michor is refined by introducing a new parameter in order to differentiate the bone marrow microenvironment sensitivities of normal and mutant stem cells. In the light of the new parameter, the system now has three distinct equilibria corresponding to the normal hematopoietic state, to the chronic state, and to the accelerated acute phase of the disease. A characterization of the three hematopoietic states is obtained based on the stability analysis. Numerical simulations are included to illustrate the theoretical results.

Keywords

mathematical modeling; dynamic system; steady state; stability; hematopoiesis; chronic myeloid leukemia; stem cells

Subject

Computer Science and Mathematics, Applied Mathematics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.