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Abstract: A mathematical model given by a two - dimensional differential system is introduced
in order to understand the transition process from the normal hematopoiesis to the chronic and
accelerated-acute stages in chronic myeloid leukemia. A previous model of Dingli and Michor is
refined by introducing a new parameter in order to differentiate the bone marrow microenvironment
sensitivities of normal and mutant stem cells. In the light of the new parameter, the system now
has three distinct equilibria corresponding to the normal hematopoietic state, to the chronic state,
and to the accelerated-acute phase of the disease. A characterization of the three hematopoietic
states is obtained based on the stability analysis. Numerical simulations are included to illustrate the
theoretical results.
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1. Introduction

Mathematical models have been used in the last decades for a better understanding, prediction
and control of biological processes. Particularly, cell proliferation related to blood production as well
as hematological diseases have been the object of mathematical modeling. Amongst the first papers
in this direction one can mention the works of Rubinow and Lebowitz [1,2], Mackey and Glass [3],
Mackey [4], and Djulbegovic and Svetina [5]. For more recent contributions we refer to Fokas et al. [6],
Neiman [7], Andersen and Mackey [8], Colijn and Mackey [9], Adimy et al. [10], Dingli and Michor
[11], Kim et al. [12], Cucuianu and Precup [13], Doumic-Jauffret et al. [14], Komarova [15], Stiehl and
Marciniak-Czochra [16], MacLean et al. [17,18], Radulescu et al. [19], Bianca et al. [20,21], Ragusa and
Russo [22], and to the references therein. For some models concerning stem cell transplantation, we
mention the papers of Vincent et al. [23], De Conde et al. [24], Kim et al. [25], Marciniak-Czochra and
Stiehl [26], Precup et al. [27,28], Precup [29] and Stiehl et al. [30]. Some review works on mathematical
models for cancer, particularly for chronic myeloid leukemia, are the papers of Afenya [31], Michor
[32], Foley and Mackey [33], Clapp and Levy [34].

Hematological stem cells (HSC) from bone marrow are at the origin of the process of cells
formation. They have the self-renewal capacity and the ability to differentiate and produce various
types of blood cells. Perturbations of this complex biological process are at the origin of several
hematological diseases, such as chronic myeloid leukemia (CML), a malignant disease arising from
mutant stem cells affecting the line of myeloid cells and progressing in three phases: chronic (also
called indolent) phase, accelerated or transitory phase, and acute or blast phase. The separation of
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the last two phases being difficult, we shall refer to them as a whole, naming it the accelerated-acute
phase.

An analogy can be drawn between the evolution of normal and abnormal stem cell populations
and the spread of two species into ecological habitats. Mathematically this evolution is expressed by
a differential system involving a number of specific parameters. Such a model for CML, proposed
by Dingli and Michor [11], yields to a mathematical characterization of two hematological states:
normal state and leukemic state, without being able to make distinction between the chronic and
accelerated-acute phases of the disease. Further analysis of the model and its extensions for bone
marrow transplantation have been undertaken by Precup and co-workers (Cucuianu and Precup [13],
Precup et al. [27,28] and Precup [29]).

In this paper we propose a refined version of the Dingli–Michor differential system that allows us
to make the distinction between the following three hematopoietic states related to chronic myeloid
leukemia: normal hematopoietic state, chronic leukemic state, and accelerated-acute state. We assume
normal hematopoietic state as a biological state in which the population of one or more mutant
hematopoietic stem cells (mHSC) tends to zero due to random events that lead to the extinction of
mutant cells, a fact demonstrated experimentally in stem cell lineages (see Jilkine and Gutenkunst [35],
Driessens et al. [36], Klein et al. [37], Lopez-Garcia et al. [38] and Snippert et al. [39]). We accomplish
our purpose by operating with distinct sensitivity parameters for normal and abnormal cells, instead
of a single common parameter as the one that was used in the original model. Our modeling choice is
biologically justified by the asymmetry of mutual influences and interactions between normal and
leukemic cells (Gou et al. [40]). The new model, also expressed by a two-dimensional differential
system, has three nontrivial steady states and their stability analysis shows that only one of them
is asymptotically stable depending on the value of a cumulative parameter D that incorporates the
growth rate, the cell death rate and the sensitivity rate of the abnormal cells, and represents the
equilibrium amount of abnormal cells. Values of D under some threshold correspond to the normal
hematological state; values of D lying in some interval characterize the chronic phase, while larger
values of D stay for the accelerated-acute phase (see Figure 1 below). In this way, from a mathematical
point of view, the transition from one hematological state to another occurs as the result of a change of
the basic leukemic cell parameters cumulated by D. The transition is progressive as the disease gets
worse, and regressive as a result of treatment. For the last case, our analysis could be a guide to the
improvement of therapeutic agents and strategies, as suggested in Precup et al. [41].

The paper is structured as follows: In Section 2, we consider the new model and we carry out
its mathematical analysis. Based on this model, the normal hematopoietic state, the chronic and
accelerated-acute phases of CML are mathematically characterized in terms of parameter D. In Section
3, we provide some numerical simulations of the model. Next, in Section 4, the model is upgraded by
six additional equations so that, as in Michor et al. [42] and Dingli and Michor [11], it becomes able to
describe the cell evolution on four levels: primitive stem cells, progenitors, differentiated cells, and
terminally differentiated cells. The numerical simulations show the parallelism between the dynamics
of primitive stem cells and that of the succeeding lines, which allows the analysis to be performed
at any level, particularly to terminally differentiated cells for which laboratory data can be obtained
easier. Finally, in Section 5, some medical remarks and conclusions are included.

We conclude this introductory section by a medical background addressed to those readers that
would like to have more biological and medical information about hematopoiesis, malignant disorders
and related literature.

1.1. Medical background

Hematopoiesis is the process of blood cells formation. The process starts in the intrauterine life in
the mesoderm of the yolk sac and continues in the liver and the spleen during the second and seventh
month. It then takes place at the level of the bone marrow, where it will carry on after birth. During
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childhood, hematopoiesis takes place in almost all bones, gradually being replaced with growth by fat
tissue. In adults, hematopoiesis occurs only in the pelvis, vertebrae, sternum (Howard et al. [43] and
Young [44]), ribs, skull, proximal humerus and femur epiphysis (Kaushansky et al. [45]).

Hematopoiesis and the differentiation process into various blood cell types can be viewed as an
evolutionary tree that grows from one single hematopoietic stem cell (HSC). A HSC can have one of
the following functions: it can renew itself, it can generate two other HSCs, or it can lose the ability of
self-renewal and begin the maturation and differentiation pathway resulting two progenitor cells, or
finally, it can give birth to a HSC and a progenitor cell. Progenitor cells are capable of initiating the
differentiation towards one of the pathways that lead to the formation of various types of blood cells:
common lymphoid progenitor (CLP) that will differentiate and maturate into B- or T-lymphocytes
and the common myeloid progenitor (CMP) that will differentiate and maturate into leukocytes
(white blood cells), erythrocytes (red blood cells) and platelets (Young [44] and Kaushansky et al.
[45]). According to recent studies, there is growing evidence that hematopoietic stem cells produce a
common myeloid progenitor and a common myelo-lymphoid progenitor (CMLP) that in their turn
produce a bipotential myeloid T progenitor and a myeloid B progenitor (Kawamoto et al. [46]).

Although HSCs have the unique properties of leading to the formation of blood cells (self-renewal
capacity and the ability to differentiate and produce different blood cells), they are dependent on several
other factors: the environment that enables cell-to-cell and cell-to-matrix interaction (micromedia,
niche), cytokines (growth, proliferation, differentiation and maturation factors) and humoral feedback
from peripheral target tissue (Howard et al. [43], Young [44], Kaushansky et al. [45], Abkowitz [47],
Cucuianu and Precup [13]). These unique properties are dependent upon two major groups of control
factors: intrinsic cell factors (DNA alterations) and extrinsic cell factors (microenvironment factors,
humoral feedback, cytokines) (Ramalingam et al. [48] and Zon [49]).

Even though mammals, humans included, have a stock of only 2× 104 HSCs (Abkowitz [47]),
they can give birth and release into the blood stream approximately 2,5 billion erythrocytes/kg/day,
2,5 billion platelets/kg/day and 1 billion granulocytes/kg/day.

Leukemias are an heterogeneous group of malignant disorders, also known as cancer, arising
from one mutant hematopoietic stem cell (mHSC) (Howard et al. [43], Jilkine and Gutenkunst [35]
Driessens et al. [36], Klein et al. [37], Lopez-Garcia et al. [38] and Snippert et al. [39]). In this study, we
analyse the dynamics of HSCs and mHSCs by assuming that at least one mHSC can be found in the
human body. Therefore, the complex biological processes on which the hematopoiesis is based are not
completely involved.

There are four main types of leukemia (based on their progression - chronic or acute, and on the
type of the affected cell - myeloid or lymphoid) (Neiman [7]). Although current guidelines include
a more comprehensive and detailed classification of leukemias (with types and subtypes of cells,
mutations acquired, etc.), they don’t make the subject of the current study, nor do they bring useful
information to our mathematical model (Arber et al. [50]).

The mHSCs have an abnormal process of differentiation and particular characteristics compared
to HSCs, due to their acquired genetic and epigenetic abnormalities: increased proliferation/growth
advantage; lower sensitivity to apoptosis and to the environment; poor differentiation; squeeze out
normal HSCs from bone marrow (Roeder and d’Inverno [51]). All these can lead to a wide range of
clinical results with major impact on patients’ health.

Chronic Myeloid Leukemia (CML) is an acquired myeloproliferative disorder (Howard et al.
[43] and Neiman [7]). The CML is probably the first recognized leukemia, dating back to the 1840s
(Young [44]).

CML represents 15% of all types of leukemia, annually occurring in every 2 out of 100 000 men
and 1.1 out of 100 000 women (Hemminki and Jiang [52]). Most frequently the diagnosis is established
during routine blood tests, occurring more frequently after the fifth decade of life (Howard et al.
[43]). The signs and symptoms may include anemia, splenomegaly, weight loss, dyspnea on exertion.
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Among the risk factors, ionizing radiation was observed to have a role in developing CML (Young
[44]).

The hallmark of CML is the Philadelphia chromosome (Ph). Ph is characterized by a mutation
in the normal hematopoietic stem cell population (Howard et al. [43]), generated by one abnormal
stem cell, with the t(9;22)(q34;q11) (Young [44]) mutation, a reciprocal translocation of the ABL gene
from chromosome 9 to chromosome 22, next to the BCR gene. This new born BCR-ABL gene codes a
fusion protein with tyrosine kinase activity, that apparently influences whether the cell lives or dies,
proliferates or not.

This type of leukemia typically undergoes three phases: chronic (also called indolent) phase,
accelerated or transitory phase, and acute/blast phase (Abkowitz [47] and Arber et al. [50]). Due to
the difficulty of separating accelerated phase from the blast phase we will refer to them as a whole,
naming it the accelerated-acute phase. Most cases are diagnosed during the chronic phase and rarely
during one of the other two phases. Once the mutation has occurred in one HSC, it starts a series of
divisions, followed by differentiation and maturation that no longer obey the feedback and control
mechanisms that apply to healthy HSCs. Therefore, the mutant cells divide at a quicker rate, producing
a large number of thrombocytes and leukocytes, resulting in a population of cells where mHSCs are
dominant.

At a certain point of CML, the occurrence of other events (most probably the acquisition of other
genetic mutations) leads to an instability of the mHSC population, that consequently leads to an
accelerated-acute phase, resulting in an exponential increase of the number of immature stem cells.
Cells multiply in a more accelerated manner and do not undergo differentiation, resulting in a blast
phase, similar to various types of acute leukemia (myeloid - 70%, lymphoid - 20% and mixt type -
10%) in terms of symptoms and clinical findings (Young [44], Abkowitz [47] and Neiman [7]). After
reaching the accelerated phase, and the blast phase, patients have a median survival of 4.8 years, and 6
months, respectively (Kantarjian et al. [53]).

In terms of treatment, even though tyrosinkinase inhibitors are effective in 70-80% of cases of
CML, stem cell transplantation (SCT) seems to be the only curative treatment, nevertheless involving a
high mortality rate due to complications (Howard et al. [43] and Thomas [54]).

2. The mathematical model

In this section, we give the mathematical model, we obtain the associated steady states and we
investigate their stability. Based on this analysis we characterize the normal hematopoietic state, the
chronic and accelerated-acute stages in CML.

2.1. The normal-leukemic dynamic system

The mathematical modeling of the time evolution of a population p of any nature begins in a first
approximation (assuming no constraints exist) with the Malthusian equation

dp
dt

= ap− cp,

where p = p (t) is the population size at time t, and a and c are the growth and death (per capita) rates,
respectively. Assuming that the growth rate is bigger than the death rate, the population will increase
exponentially according to the law

p (t) = p(0) exp ((a− c) t) ,

which is non-realistic in the long run, particularly for limited biological populations. Thus, a more
realistic approach is to consider that the growth (and/or death) rate will change during evolution
by a self-limiting mechanism or exterior influences. For instance, the growth rate of a self-limiting
population can be a/ (1 + bp) depending on the population size itself. Here b is a proportionality factor
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that shows how sensitive is that population with respect to its own size. This shows that the growth
rate decreases as the population size p increases. In addition, the influence over p of a competitive
population q = q (t) can be simulated in the model by a growth rate of the form a/ (1 + b1 p + b2q) ,
where the ratio b2/b1 shows how strong the diminishing effect due to population q is, compared to
that of self-limiting.

Applied to the normal and abnormal stem cell populations denoted by x and z, the above
modeling choice leads to the following differential system

dx
dt

=
a

1 + β1x + β2z
x− cx (1)

dz
dt

=
A

1 + γ1x + γ2z
z− Cz.

Here, since abnormal cells have a stronger diminishing effect on the growth rate of normal cells than
on their own growth rate, it is natural to assume that

β2 > γ2. (2)

Also, the almost negligible effect of normal cells over the growth rate of population z (i.e., γ1 is much
smaller than β1) justifies the inequality

γ2

γ1
>

β2

β1
. (3)

For the mathematical analysis of most models, it is often convenient that the number of parameters
is reduced as much as possible. Thus, in our case, we can reduce the number of parameters β1, β2, γ1, γ2

to three by making the change of variable (equivalently, by rescaling the abnormal cell population)

y =
γ2

γ1
z.

Substituting in (1) yields the system

dx
dt

=
a

1 + b1x + b2y
x− cx (4)

dy
dt

=
A

1 + B(x + y)
y− Cy. (5)

where
b1 = β1, b2 = β2

γ1

γ2
, B = γ1.

Then (3) yields b1 > b2, which shows the different contributions of the normal and abnormal stem cells
to the diminution of the nonrestrictive growth rate of the normal cell population, while (2) guarantees
that b2 > B, reflecting the eventual advantage of the abnormal cells of being less sensitive to the bone
marrow microenvironment.

System (4)-(5) is our basic model for normal-leukemic cell evolution. Here the model parameters
a and A are the nonrestrictive growth rates (due to self-renewal) of normal and abnormal stem cells,
respectively; b1, b2 and B are the bone marrow microenvironment sensitivities; while c and C stand for
their cell death rates (due to differentiation, apoptosis and other elimination mechanisms) (see Alenzi
et al. [55], Cisneros et al. [56], Domen [57], Riether et al. [58], Vivier et al. [59]). The terms

1
1 + b1x + b2y

and
1

1 + B(x + y)
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model the crowding effect in the bone marrow microenvironment, introduce competition between
normal and abnormal stem cells, and guarantee the homeostasis at the level of cell population. We
assume that for both cell populations, the growth rate is greater than the death rate, that is

a > c and A > C.

Note that an alternative model for normal-abnormal dynamics can be found in Neiman [7], where
the role of the parameter b1/b2 is given by a parameter denoted by g and assumed greater than or
equal to one.

The case b1 = b2 was considered by Dingli and Michor [11] and Cucuianu and Precup [13]. In
this case there are only two non-zero steady states, (d, 0) and (0, D), where d and D represent the
homeostatic amounts of normal and abnormal stem cells, and they are given by

d =
1
b1

( a
c
− 1

)
and D =

1
B

(
A
C
− 1

)
. (6)

In this paper we assume that b1 > b2. As we shall see, in this case, besides the non-zero steady
states (d, 0) and (0, D), a steady state (x∗, y∗) could also exist with both positive components, i.e., x∗ >
0 and y∗ > 0. This makes the new model able to differentiate between chronic and accelerated-acute
phases in CML.

We continue to analyze the system (4)-(5).

(a) Monotonicity of the solutions. The function x(t) increases during the time intervals where
dx/dt > 0, i.e., a/(1 + b1x (t) + b2y (t)))− c > 0, or equivalently x(t) + (b2/b1)y(t) < d. Hence, x(t)
increases as long as x(t) + (b2/b1)y(t) < d, and decreases as long as x(t) + (b2/b1)y(t) > d.

From a biological point of view this can be explained as a competition between stem cells for
a specific microenvironment (niche). As long as the population of HSCs has an advantage over the
population of mHSCs, they can coexist by finding a balance. Once this balance is disturbed and
abnormal stem cell population gains competitive advantages over the normal stem cell population,
leukemic phases are expected to develop (see Stine and Matunis [60]).

Similarly, the function y(t) increases as long as A/(1 + B(x (t) + y (t)))− C > 0, or equivalently
x(t) + y(t) < D, and decreases when x(t) + y(t) > D.

(b) Steady states. A steady state (or an equilibrium) is a constant solution, i.e., a solution for
which dx/dt = dy/dt = 0. Hence, the steady states are obtained by solving the algebraic system

a
1 + b1x + b2y

x− cx = 0 (7a)

A
1 + B(x + y)

y− Cy = 0. (7b)

The solutions of the system (7a)-(7b) are the pairs

(0, 0), (d, 0), (0, D) and (x∗, y∗),

where d, D are given by (6),

x∗ = − b2c(A− C)− BC(a− c)
BCc(b1 − b2)

and

y∗ =
b1c(A− C)− BC(a− c)

BCc(b1 − b2)
.
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Direct calculation leads to

x∗ =
b1

b1 − b2
d− b2

b1 − b2
D, y∗ =

b1

b1 − b2
(D− d) .

It is easy to see that under the assumption that b1 > b2, both numbers x∗ and y∗ are positive (acceptable
values from a biological point of view) if and only if

d < D <
b1

b2
d.

Therefore, in addition to the non-zero steady states (d, 0) and (0, D) , a positive steady state (x∗, y∗)
appears, contrary to the case where b1 = b2.

(c) Stability. We study the stability of the steady states of the system (4)-(5) using the standard
first approximation method (for details see Kaplan and Glass [61], Coddington and Levinson [62] and
Jones et al. [63]). According to this method, an equilibrium (α, β) is asymptotically stable if the Jacobian
matrix J(α, β) is a Hurwitz matrix, i.e., Re λ < 0 for all its characteristic roots λ, and is unstable if
Re λ > 0 for at least one of its characteristic roots.

Note that the steady state (0, 0) is unstable as can be shown based on the assumptions a > c and
A > C.

For the steady state (d, 0), the eigenvalues of the Jacobian matrix J(d, 0) are

λ1 = − c(a− c)
a

, λ2 =
b1c(A− C)− BC(a− c)

b1c + B(a− c)
.

Obviously λ1 < 0. Thus, the steady state (d, 0) is asymptotically stable if and only if λ2 < 0, or
equivalently, if D < d. On the contrary, if D > d, then the equilibrium (d, 0) is unstable.

The eigenvalues of the Jacobian matrix J(0, D) associated to the equilibrium (0, D) are

λ1 = − b2c(A− C)− BC(a− c)
b2(A− C) + BC

, λ2 = −C(A− C)
A

.

Here λ2 < 0 and so the steady state (0, D) is asymptotically stable if and only if λ1 < 0. This happens
if D > (b1/b2)d. Contrarily, if D < (b1/b2)d, then the steady state (0, D) is unstable.

The eigenvalues of the Jacobian matrix J(x∗, y∗) corresponding to the equilibrium (x∗, y∗) are

λ1 =
cb1(b2c(A− C)− BC(a− c))

aBC(b1 − b2)
, λ2 = −C(b1c(A− C)− BC(a− c))

Ac(b1 − b2)
.

It is easy to see that λ1 < 0 and λ2 < 0, that is the equilibrium (x∗, y∗) is asymptotically stable, if and
only if d < D < (b1/b2)d. Otherwise, if D < d or D > (b1/b2)d, the equilibrium (x∗, y∗) is unstable.

Figure 1. Diagram of the transition from the normal hematopoiesis to the chronic and accelerated-acute
stages in myeloid leukemia. Values of D less than d correspond to the normal hematopoietic state;
values of D between d and (b1/b2)d correspond to the chronic phase of leukemia; values of D larger
than (b1/b2)d characterize the accelerated-acute phase of the disease.

The above discussion shows a qualitative change of the system’s behavior, i.e., a change of stable
equilibrium where the parameter D varies. The values of this parameter at which the stable equilibrium
changes (called bifurcation points) are D = d and D = (b1/b2)d. We can summarize the bifurcation
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analysis of our system as follows:

• If D < d, then the steady state (d, 0) is asymptotically stable, and the steady state (0, D) is unstable.

• If d < D < (b1/b2)d, then the steady state (x∗, y∗) is positive and asymptotically stable, and the
steady states (d, 0) and (0, D) are unstable.

• If D > (b1/b2)d, then the steady state (0, D) is asymptotically stable, and the steady state (d, 0) is
unstable.

(a) Normal state (b) Chronic phase (c) Accelerated-acute phase

Figure 2. The phase portrait of the two-dimensional system (4)-(5), in the normal state (a) D < d, in
the chronic phase (b) d < D < (b1/b2)d, and in the accelerated-acute phase (c) (b1/b2)d < D. The
orbits [x(t), y(t)] approach the unique asymptotically stable equilibrium (represented by a thickened
red point): [d, 0], in case (a); [x∗, y∗], in case (b); [0, D], in case (c).

2.2. The mathematical-biological interpretation

In view of the above discussion, we can claim that the relationship D < d characterizes the
normal hematopoiesis; the relationship d < D < (b1/b2)d stands for the chronic phase of leukemia;
while the inequality D > (b1/b2)d characterizes the accelerated acute phase of the disease. Indeed,
in the case where D < d, the normal cell population x (t) approaches the equilibrium abundance d
(normal homeostatic state) while the abnormal cell population y (t) tends to zero; in the case where
d < D < (b1/b2)d, the normal cell populations x (t) and y (t) approach the equilibrium abundances
x∗ and y∗, respectively; finally, if D > (b1/b2)d, then the leukemic cell population becomes dominant
approaching its equilibrium abundance D (leukemic homeostatic state) and leads to the elimination of
the normal cells, i.e., x (t) tends to zero.

Finally, a condition like D = d or D = (b1/b2)d is physiologically very unstable, since small
variations of the kinetic parameters can switch the normal state into the chronic leukemic state and
vice-versa, if D = d, and can switch the chronic state into the accelerated-acute phase and vice-versa,
if D = (b1/b2)d. Also, from a medical point of view, the situations D = d and D = (b1/b2)d are
practically undetectable.

In terms of the system’s biological growth parameters, the hematological states are characterized
as follows:

1
B

(
A
C − 1

)
< 1

b1

( a
c − 1

)
(normal state) ;

1
b1

( a
c − 1

)
< 1

B

(
A
C − 1

)
< 1

b2

( a
c − 1

)
(chronic phase) ;

1
b2

( a
c − 1

)
< 1

B

(
A
C − 1

)
(accelerated-acute phase) .

A diagram of the transition from normal hematopoiesis to chronic and accelerated-acute stages in
CML is presented in Figure 1. Notice that the length of the interval [d, (b1/b2) d] that corresponds to
the chronic phase is (b1/b2 − 1) d and depends on the ratio b1/b2. The bigger the ratio b1/b2 is, the
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larger is the interval in which patient’s parameter D can lay in chronic phase. According to our model,
values of parameter D close to d correspond to early stages of the disease, while values of D close to
(b1/b2) d indicate advanced stages of the disease moving towards the accelerated-acute phase.

3. Numerical simulation of the model

Further on we illustrate the theoretical results on the system (4)-(5) by numerical simulations
using the Maple package.

3.1. Parameter estimations

The parameters employed by our model depend on a large number of biophysical and biochemical
mechanisms. The latter make the exact estimation of these parameters almost impossible. Instead,
one may expect from any estimation procedure that confidence intervals for parameters are obtained.
For a qualitative analysis such as ours, parameter estimation is not essential, and as already seen,
relationships between parameters are enough. Parameter estimation becomes essential when the
model is applied for real-time predictions and individual patients.

According to the paper of Dingli and Michor [11], the number of the stem cells in a healthy
adult body is approximately d = 2× 104 (normal homeostatic state), and the growth and death rates
of normal stem cells could be taken a = 0.005 and c = 0.002. However, recent studies have shown
different growth rates of HSC. One study concluded that HSCs divide on average every 40 weeks, with
a range from 25 to 50 weeks (see Catlin et al. [64]). Others even suggested the existence of two types
of HSCs with different replication rates (dormant HSCs divide about every 145 days, active HSCs
divide about every 36 days) (see Wilson et al. [65]). Regarding the life span of HSC, recent studies
have suggested a death rate ranging from 10 to 60 months (see Sieburg et al. [66] and Sieburg et al.
[67]). The factor b1/b2 allows for the possibility that the abnormal stem cells are less sensitive to the
bone marrow microenvironment than the normal cells. The parameter b1 that stands for the bone
marrow microenvironment sensitivity of the normal stem cells can be estimated from the expression of
d, namely b1 = (a/c− 1) /d = 0.75× 10−4.

Parameters A, B, C and b2 vary from patient to patient, and so do parameter D and the length
of the chronicity interval [d, (b1/b2) d] . For our numerical simulations we choose value 2 for b1/b2

and we then have b2 ' 0.38× 10−4. Also, as in Dingli and Michor [11], we assume that the value of
parameter B is approximately half of b2, hence B ' 0.19× 10−4. As regards the parameters A and C,
several values are considered in our simulations such that all the previous relationships between the
model parameters hold.

3.2. Numerical simulations

We simulate numerically the system (4)-(5) in order to investigate the behavior of normal and
abnormal stem cell populations in each of the cases: D < d (normal state); d < D < (b1/b2)d (chronic
state); and (b1/b2)d < D (accelerated-acute state). The graphs of x(t) (blue solid line) and y(t) (red
broken line) for a time interval 0 ≤ t ≤ T, are represented for values of the model parameters:
a, b1, b2, c, A, B, C, initial values x(0), y(0) and length T of the time interval.

Case I Case II Case III Case IV
a < A a < A a > A a > A
c < C c > C c < C c > C

b1 > b2 > B b1 > b2 > B b1 > b2 > B b1 > b2 > B

Table 1. The numerical simulation cases. a, A = growth rates; b1, b2, B = bone marrow microenvironment
sensitivity; c, C = death rates; a, b1, b2, c = normal stem cell parameters and A, B, C = abnormal (leukemic)
stem cell parameters.
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We shall restrict our simulations to the situations presented in Table 1. In all of the cases we
assume that the abnormal stem cells are less sensitive to environmental crowding than the normal
stem cells, that is b1 > b2 > B.

Case I : In this case the growth and death rates of normal stem cells are smaller than the growth
and death rates of abnormal stem cells. Figure 3 (a) shows the behavior in time (T = 3000 days) of
the two cell populations for the parameter values provided in the first line in Table 2, values that
correspond to the normal hematopoietic state (D < d). The normal stem cell population x(t) (blue solid
line) tends to the value d while the abnormal stem cell population y(t) (red broken line) tends towards
0. Biologically this mutant/abnormal cells extinction, due to random events, has been explained and
demonstrated in several studies using stem cell lineages (see Jilkine and Gutenkunst [35], Driessens
et al. [36], Klein et al. [37], Lopez-Garcia et al. [38] and Snippert et al. [39]). Figure 3 (b) shows the
behavior in time (T = 25000 days) of the two cell populations for the parameter values from the second
line of Table 2, values that correspond to the chronic state d < D < (b1/b2)d. The normal and leukemic
stem cell populations x(t), y(t) tend toward x∗ and y∗, respectively. Figure 3 (c) shows the behavior in
time (T = 8000 days) of the two cell populations for the corresponding parameter values from Table
2, values that lead to the accelerated-acute state D > (b1/b2)d. The normal stem cell population x(t)
tends towards 0, while the leukemic stem cell population y(t) tends to the value D.

(a) Normal state (b) Chronic phase (c) Accelerated-acute phase

Figure 3. Behavior of the normal and abnormal (leukemic) stem cell populations in Case I. Initial
conditions: (a) x(0) = 1.5× 104, y(0) = 5× 103; (b) x(0) = 2× 104, y(0) = 1× 103; (c) x(0) = 2× 104,
y(0) = 1.

Case II : Here the growth rate of normal stem cells is smaller than the growth rate of abnormal stem
cells, and the death rate of normal stem cells is greater than the death rate of abnormal stem cells. Then
A/C > a/c and since 1/B > 1/b2, we immediately see that (1/B) (A/C− 1) > (1/b2) (a/c− 1) , or
equivalently D > (b1/b2) d. Hence, in this case only the accelerated acute state is possible. Figure
4 shows the behavior in time (T = 6000 days) of the two cell populations for the corresponding
parameter values from Table 2. The normal stem cell population x(t) tends towards 0, while the
leukemic stem cell population y(t) tends to the value D.

Figure 4. Behavior of the normal and leukemic stem cell populations in Case II (Accelerated-acute
phase). Initial conditions: x(0) = 2× 104, y(0) = 1.

Case III : In this case, the growth rate of normal stem cells is greater than the growth rate of
abnormal stem cells, and the death rate of normal stem cells is smaller than the death rate of abnormal
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stem cells. Figure 5 (a) shows the behavior in time (T = 25000 days) of the two cell populations for the
corresponding parameter values from Table 2, values that correspond to the normal hematopoietic
state D < d. The normal stem cell population x(t) becomes arbitrarily close to the value d, while the
abnormal stem cell population y(t) tends towards 0. Figure 5 (b) shows the behavior in time (T = 25000
days) of the two cell populations for the corresponding parameter values from Table 2, values that
correspond to the chronic state d < D < (b1/b2)d. The normal and leukemic stem cell populations
x(t), y(t) tend toward x∗ and y∗, respectively. Figure 5 (c) shows the behavior in time (T = 40000 days)
of the two cell populations for the corresponding parameter values from Table 2, values that lead to
the accelerated acute state D > (b1/b2)d. The normal stem cell population x(t) tends towards 0, while
the leukemic stem cell population y(t) tends to the value D.

(a) Normal state (b) Chronic phase (c) Accelerated-acute phase

Figure 5. Behavior of the normal and abnormal (leukemic) stem cell populations in Case III. Initial
conditions: (a) x(0) = 1.5× 104, y(0) = 5× 103; (b) x(0) = 2× 104, y(0) = 5× 103; (c) x(0) = 2× 104,
y(0) = 1.

Fig. a b1 × 10−4 b2 × 10−4 c A B× 10−4 C S− S

3(a) 0.005 0.75 0.38 0.002 0.01 0.19 0.009 d
3(b) 0.005 0.75 0.38 0.002 0.01 0.19 0.007 x∗, y∗

3(c) 0.005 0.75 0.38 0.002 0.01 0.19 0.004 D
4 0.005 0.75 0.38 0.002 0.007 0.19 0.001 D

5(a) 0.005 0.75 0.38 0.002 0.004 0.19 0.003 d
5(b) 0.005 0.75 0.38 0.002 0.0045 0.19 0.003 x∗, y∗

5(c) 0.005 0.75 0.38 0.002 0.0045 0.19 0.0025 D
6(a) 0.005 0.75 0.38 0.002 0.0012 0.19 0.001 d
6(b) 0.005 0.75 0.38 0.002 0.0015 0.19 0.001 x∗, y∗

6(c) 0.005 0.75 0.38 0.002 0.0025 0.19 0.001 D

Table 2. Parameter values for simulations. S-S = steady state; d = 2× 104 (normal); D = variable
parameter (leukemic).

Case IV : In this case, the growth rate of normal stem cells is greater than the growth rate of
abnormal stem cells, and the death rate of normal stem cells is greater than the death rate of abnormal
stem cells. Figure 6 (a) shows the behavior in time (T = 25000 days) of the two cell populations for the
corresponding parameter values from Table 2, values that correspond to the normal hematopoietic
state D < d. The normal stem cell population x(t) tends to the value d, while the abnormal stem
cell population y(t) approaches 0. Figure 6 (b) shows the behavior in time (T = 25000 days) of the
two cell populations for the corresponding parameter values from Table 2, values that correspond
to the chronic state d < D < (b1/b2)d. The normal and leukemic stem cell populations x(t), y(t)
tend toward x∗ and y∗, respectively. Figure 6 (c) shows the behavior in time (T = 25000 days) of the
two cell populations for the corresponding parameter values from Table 2, values that lead to the
accelerated-acute state D > (b1/b2)d. The normal stem cell population x(t) approaches 0, while the
leukemic stem cell population y(t) tends to the value D.
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(a) Normal state (b) Chronic phase (c) Accelerated-acute phase

Figure 6. Behavior of the normal and leukemic stem cell populations in Case IV. Initial conditions: (a)
x(0) = 1.5× 104, y(0) = 5× 103; (b) x(0) = 2× 104, y(0) = 5× 103; (c) x(0) = 2× 104, y(0) = 1.

4. The extended model to terminally differentiated cells

Working at the level of primitive stem cells there is not an ordinary method to determine the
size of cell populations. Therefore, it would be useful to have a reflection of the primitive stem cell
evolution at the level of terminally differentiated cells, since the latter can be easily estimated by
current blood tests.

The idea appears in Michor et al. [42], and applied to our model yields the extended system

dx1
dt = a1

1+b1x1+b2y1
x1 − c1x1 (NSC) dy1

dt = A1
1+B(x1+y1)

y1 − C1y1 (ASC)

dx2
dt = a2x1 − c2x2 (NPC) dy2

dt = A2y1 − C2y2 (APC)

dx3
dt = a3x2 − c3x3 (NDC) dy3

dt = A3y2 − C3y3 (ADC)

dx4
dt = a4x3 − c4x4 (NTC) dy4

dt = A4y3 − C4y4 (ATC).

Here x2 (t) , y2 (t) stand for the normal (N) and abnormal (A) progenitor cell (PC) populations, x3 (t) ,
y3 (t) stand for the normal and abnormal differentiated cell (DC) populations and x4 (t) , y4 (t) stand
for the normal and abnormal terminally differentiated cell (TC) populations, respectively.

Notice the different form of the additional six equations associated to the succeeding cell
compartments. It is the balance expression of the transfer from one compartment to the next, namely, it
states that the rate of change of cell population equals the amount of new cells produced by the anterior
compartment minus the amount of cells that leave (by differentiation or apoptosis) that compartment.
Thus, the new parameters a2, A2 are the rates at which normal and abnormal progenitor cells are
produced from normal and abnormal stem cells; a3, A3 are the rates at which normal and abnormal
differentiated cells are produced from normal and abnormal progenitor cells; a4, A4 are the rates at
which normal and abnormal terminally differentiated cells are produced from normal and abnormal
differentiated cells and c2, c3, c4, C2, C3, C4 are the death rates of normal and abnormal progenitors,
differentiated and terminally differentiated cells.

In the equilibrium state, we assume that in a healthy adult body the number of stem cells is
d = x∗1 = 2× 105, the number of progenitor cells is x∗2 = 1× 108, the number of differentiated cells
is x∗3 = 1× 1010 and the number of terminally differentiated cells is x∗4 = 1× 1012 (see Michor et al.
[42]). Consequently, in the equilibrium state, we have for progenitor cells a2x∗1 − c2x∗2 = 0, whence
a2/c2 = x∗2/x∗1 = 5× 102, for differentiated cells a3x∗2 − c3x∗3 = 0, whence a3/c3 = x∗3/x∗2 = 1× 102,
and for terminally differentiated cells a4x∗3 − c4x∗4 = 0, hence a4/c4 = x∗4/x∗3 = 1× 102. Therefore, if
c2 = 0.008, c3 = 0.05 and c4 = 1 (see Michor et al. [42]), then a2 = 4, a3 = 5, and a4 = 100.

Note that if
(x1E, y1E)
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is any equilibrium (E) of the initial system (4)-(5), then

(x1E, y1E, a2x1E/c2, A2y1E/C2, a2a3x1E/c2c3, A2 A3y1E/C2C3,

a2a3a4x1E/c2c3c4, A2 A3 A4y1E/C2C3C4)

is an equilibrium of the extended system, and the two equilibria have the same stability property.
Therefore, working at the level of primitive stem cells is equivalent to working at the level of any
one of the succeeding classes of cells. Thus, if by blood tests one estimates the steady state ration
x4E/y4E between healthy and unhealthy terminally differentiated cells as being equal to λ, then we
can immediately calculate the analogue steady state ratios of differentiated, progenitors and stem cells,
as follows:

x3E
y3E

= λ
A4c4

a4C4
,

x2E
y2E

= λ
A3 A4c3c4

a3a4C3C4
,

x1E
y1E

= λ
A2 A3 A4c2c3c4

a2a3a4C2C3C4
.

Figures 7 (a)-(d) show that there is indeed a parallelism between the behaviors of normal and
abnormal cell populations in all four cell compartments.

(a) Stem cell populations (b) Progenitor cell populations

(c) Differentiated cell populations (d) Terminally differentiated cell populations

Figure 7. Behavior of (a) stem cell populations, (b) progenitor cell populations, (c) differentiated cell
populations and (d) terminally differentiated cell populations for the parameter values: a1 = 0.005,
a2 = 4, a3 = 5, a4 = 100, b1 = 0.75× 10−5, b2 = 0.38× 10−5, c1 = 0.002, c2 = 0.008, c3 = 0.05,
c4 = 1, A1 = 0.01, A2 = 8, A3 = 10, A4 = 100, B = 0.19× 10−5, C1 = 0.004, C2 = c2, C3 = c3,
C4 = c4, and initial conditions: x1(0) = 2× 105, x2(0) = 1× 108, x3(0) = 1× 1010, x4(0) = 1× 1012,
y1(0) = y2(0) = y3(0) = y4(0) = 1.

5. Discussion and Conclusions

By resuming and adding a new parameter to the system created by Dingli and Michor, the present
study tried to bring the model and the numerical simulations one step closer to the complex reality of
leukemic stem cell evolution, while also maintaining the model simple enough to draw conclusions.

We were able to analyze elements and characteristics of both normal and mutant stem cells,
unproven or unnoticed on the original model, but hopefully of some use for the upcoming research
and mathematical modeling of leukemic pathology.
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By analyzing the numerical simulation for the first case, in which leukemic stem cells had a rate
of multiplication higher than that of normal stem cells (in our case two times higher), we observed
that the evolution of leukemic pathology was dependent on the ratio given by death rates of the two
types of stem cells lines. Therefore, at a mHSC death rate 4 times higher than that of normal HSC,
the disease progressed and led to the disappearance of mHSCs, while in case of a lower death rate of
the leukemic stem cells ranging between 4× c and 3× c, the disease evolved towards a stabilization
of the two stem cell lines, that is, to the chronic phase of CML. Finally, the disease evolution shifted
towards the accelerated-acute phase when the mHSC death rate decreased below 3× c, a situation
clinically similar to acute myeloid leukemia (AML). The analysis of the second case, reveals us a
very logical conclusion. The leukemic stem cells, having all the advantages (proliferation rate higher
than normal stem cells, death rate lower than normal stem cells and lower sensitivity towards the
micronenvironment) apparently leads us to only one possible case, that of the accelerated-acute phase
of CML. This allowed us to confirm our previously mentioned conclusion which stated that the disease
evolved towards the specific course of the accelerated-acute phase of chronic myeloid leukemia in
absence of a death rate of mHSC several times higher than the death rate of normal stem cells. In
terms of medical treatment, this case appears to underline the importance of microenvironment in the
evolution of the leukemic disease. Furthermore, assuming that medical treatments fail to decrease
the proliferation rate or increase the death rate of mHSC, the microenvironment seems to be the only
therapeutic target left available. Also, we noticed that the accelerated-acute phase of CML developed
approximately 6 years after the occurrence of the first leukemic stem cell (if the initial parameters were
maintained constant).

A special situation is represented by the analysis of Cases III and IV, when the leukemic stem cells
multiplication rate is lower than that of normal stem cells. Although the advantage gained by leukemic
stem cells proliferation and growth rate is mentioned by many medical sources (Howard et al. [43],
Young [44], Kaushansky et al. [45], Abkowitz [47], Cucuianu and Precup [13], Hemminki and Jiang
[52] and Thomas [54]), the analysis of numerical simulations for our model showed the possibility of
chronic myeloid leukemia occurring and shifting between its three stages. Therefore, in Cases III and
IV, we observed the occurrence of all three stages, the disease following a similar course to that seen in
Case I, but characterized by a longer evolutionary time frame, probably due to the slowness of the
mHSCs proliferation rate. In clinical practice, though rare, such cases can be seen in elderly people
that present a very slow evolution of the disease.

The analysis of the mathematical model and numerical simulations led us to clues and conclusions
that are otherwise difficult to notice, explain or even measure, relying solely on the gross figures
produced by laboratory studies or clinical observation. According to the analysis of our mathematical
model and numerical simulations we can state that:

1. the mHSCs proliferation rate is a predictive factor for the development of the accelerated-acute
state: an increased rate of proliferation of these cells in comparison to normal stem cells
determines the accelerated-acute phase to occur earlier;

2. the death rate of leukemic stem cells is predictive for the global evolution of the disease,
influencing the shift between the different phases of the chronic myeloid leukemia.

Therefore, the clinical judgment, treatment plan and research to improve therapy for leukemic
disease could be influenced or based on the importance of these two factors. In terms of treatment,
according to our mathematical model, we should probably focus more on controlling values of these
parameters of mHSC in order to reach a coexisting phase of the two populations, taking into account
patients’ symptoms and quality of life, rather than being aggressive and trying to eradicate all leukemic
cells. In light of recent research and opinions (Enriquez-Navas et al. [68] and Gerlinger et al. [69]),
trying to live and collaborate with cancer could be a more intelligent strategy than trying to eradicate
it.

Certainly, real clinical experience regarding the shift of leukemic disease from one phase to another
is more complex and may comprise other parameters that have not been taken into account by this
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study, either because they were impossible to include in our mathematical model or because they are
still unknown by medical researchers. However, mathematical models and numerical simulations that
are applied in the biomedical field can reveal aspects and ideas that deserve to be closely investigated in
correlation with the medical practice and research. Furthermore, these interdisciplinary collaborations
may be considered groundwork for the necessary reasoning process that will consequently identify
research directions for improved treatments of extensively investigated pathologies, such as leukemia.
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