Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A Bottom-up Approach for Pig Skeleton Extraction Using RGB Data

Version 1 : Received: 17 January 2020 / Approved: 19 January 2020 / Online: 19 January 2020 (04:40:15 CET)

How to cite: Khan, A.Q.; Khan, S. A Bottom-up Approach for Pig Skeleton Extraction Using RGB Data. Preprints 2020, 2020010208 (doi: 10.20944/preprints202001.0208.v1). Khan, A.Q.; Khan, S. A Bottom-up Approach for Pig Skeleton Extraction Using RGB Data. Preprints 2020, 2020010208 (doi: 10.20944/preprints202001.0208.v1).

Abstract

Animal behavior analysis is a crucial tasks for the industrial farming. In an indoor farm setting, extracting Key joints of animal is essential for tracking the animal for longer period of time. In this paper, we proposed a deep network that exploit transfer learning to trained the network for the pig skeleton extraction in an end to end fashion. The backbone of the architecture is based on hourglass stacked dense-net. In order to train the network, key frames are selected from the test data using K-mean sampler. In total, 9 Keypoints are annotated that gives a brief detailed behavior analysis in the farm setting. Extensive experiments are conducted and the quantitative results show that the network has the potential of increasing the tracking performance by a substantial margin.

Subject Areas

pig; behavior analysis; hourglass; stacked dense-net; K-mean sampler

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.