Preprint Article Version 1 This version is not peer-reviewed

Co-existence of Quorum Sensing and Quorum Sensing Inhibitory Compounds in Marine Sponge Sarcotragus spinosulus

Version 1 : Received: 13 December 2019 / Approved: 13 December 2019 / Online: 13 December 2019 (12:12:54 CET)

A peer-reviewed article of this Preprint also exists.

Saurav, K.; Borbone, N.; Burgsdorf, I.; Teta, R.; Caso, A.; Bar-Shalom, R.; Esposito, G.; Britstein, M.; Steindler, L.; Costantino, V. Identification of Quorum Sensing Activators and Inhibitors in The Marine Sponge Sarcotragus spinosulus. Mar. Drugs 2020, 18, 127. Saurav, K.; Borbone, N.; Burgsdorf, I.; Teta, R.; Caso, A.; Bar-Shalom, R.; Esposito, G.; Britstein, M.; Steindler, L.; Costantino, V. Identification of Quorum Sensing Activators and Inhibitors in The Marine Sponge Sarcotragus spinosulus. Mar. Drugs 2020, 18, 127.

Journal reference: Mar. Drugs 2020, 18, 127
DOI: 10.3390/md18020127

Abstract

Marine sponges, a well documented prolific source of natural products, harbors numerous microbial communities believed to possess N-acyl homoserine lactones (AHLs) mediated Quorum sensing (QS) as one of the mechanisms of interaction. Bacteria and eukaryotic organisms are known to produce molecules that can interfere with QS signaling, thus affecting microbial genetic regulation and function. In the present study, we established the potential for production of both QS signal molecules as well as QS interfering molecules (QSI) in the same sponge species Sarcotragus spinosulus. A total of eighteen saturated acyl chain AHLs were identified along with six putative unsaturated acyl chain AHLs. Bioassay guided purification led to the isolation of two brominated metabolites with QS-interfering activity. The structures of these compounds were elucidated by comparative spectral analysis of 1HNMR and HR-MS data and was identified as 3-Br-N-methyltyramine (1) and 5,6-dibromo-N,N-dimethyltryptamine (2). The QSI activity of compounds 1 and 2 were evaluated using reporter gene assays for long- and short-chain signals (E. coli pSB1075 and E. coli pSB401) and was confirmed by measuring dose dependent inhibition of proteolytic activity and pyocyanin production in P. aeruginosa PAO1. The obtained results showed the co-existence of QS and QSI in S. spinosulus, a complex network which may mediate the orchestrated function of the microbiome within the sponge holobiont.

Subject Areas

sponge; quorum sensing; quorum sensing inhibition; N-acyl homoserine lactone; Sarcotragus spinosulus; 3-Br-N-methyltyramine; 5,6-dibromo-N,N-dimethyltryptamine

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.