Preprint
Article

This version is not peer-reviewed.

An Efficient and Leightweight Illumination model for Planetary Bodies including Direct and Diffuse Radiation

Submitted:

11 December 2019

Posted:

12 December 2019

You are already at the latest version

Abstract
We present a numerical illumination model to calculate direct as well as diffuse or Hapke scattered radiation scenarios on arbitrary planetary surfaces. This includes small body surfaces such as main belt asteroids as well as e.g. the lunar surface. The model is based on the raytracing method. This method is not restricted to spherical or ellipsiodal shapes but digital terrain data of arbitrary spatial resolution can be fed into the model. Solar radiation is the source of direct radiation, wavelength-dependent effects (e.g. albedo) can be accounted for. Mutual illumination of individual bodies in implemented (e.g. in binary or multiple systems) as well as self-illumination (e.g. crater floors by crater walls) by diffuse or Hapke radiation. The model is validated by statistical methods. A χ2 test is undertaken to compare simnulated images with DAWN images acquired during the survey phase at small body 4 Vesta.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated