Preprint
Article

Functional ARCH and GARCH Models: A Yule-Walker Approach

This version is not peer-reviewed.

Submitted:

23 January 2020

Posted:

31 January 2020

Read the latest preprint version here

Abstract
Conditional heteroskedastic financial time series are commonly modelled by ARCH and GARCH. ARCH(1) and GARCH processes were recently extended to the function spaces C[0,1] and L2[0,1], their probabilistic features were studied and their parameters were estimated. The projections of the operators on finite-dimensional subspace were estimated, as were the complete operators in GARCH(1,1). An explicit asymptotic upper bound of the estimation errors was stated in ARCH(1). This article provides sufficient conditions for the existence of strictly stationary solutions, weak dependence and finite moments of ARCH and GARCH processes in various Lp[0,1] spaces, C[0,1] and other spaces. In L2[0,1] we deduce explicit asymptotic upper bounds of the estimation errors for the shift term and the complete operators in ARCH and GARCH and for the projections of the operators on a finite-dimensional subspace in ARCH. The operator estimaton is based on Yule-Walker equations. The estimation of the GARCH operators also involves a result concerning the estimation of the operators in invertible, linear processes which is valid beyond the scope of ARCH and GARCH. Through minor modifications, all results in this article regarding functional ARCH and GARCH can be transferred to functional ARMA.
Keywords: 
ARCH and GARCH; ARMA; functional data; invertible, linear processes; parameter estimation; stationary solutions; Yule-Walker equations
Subject: 
Computer Science and Mathematics  -   Probability and Statistics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

883

Views

869

Comments

1

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated