Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Saccharomyces Arboricola and Its Hybrids’ Propensity for Sake Production: Interspecific Hybrids Reveal Increased Fermentation Abilities and a Mosaic Metabolic Profile

Version 1 : Received: 4 December 2019 / Approved: 9 December 2019 / Online: 9 December 2019 (03:23:15 CET)

A peer-reviewed article of this Preprint also exists.

Winans, M.J.; Yamamoto, Y.; Fujimaru, Y.; Kusaba, Y.; Gallagher, J.E.G.; Kitagaki, H. Saccharomyces arboricola and Its Hybrids’ Propensity for Sake Production: Interspecific Hybrids Reveal Increased Fermentation Abilities and a Mosaic Metabolic Profile. Fermentation 2020, 6, 14. Winans, M.J.; Yamamoto, Y.; Fujimaru, Y.; Kusaba, Y.; Gallagher, J.E.G.; Kitagaki, H. Saccharomyces arboricola and Its Hybrids’ Propensity for Sake Production: Interspecific Hybrids Reveal Increased Fermentation Abilities and a Mosaic Metabolic Profile. Fermentation 2020, 6, 14.

Journal reference: Fermentation 2020, 6, 14
DOI: 10.3390/fermentation6010014

Abstract

The use of interspecific hybrids during the industrial fermentation process has been well established, positioning the frontier of advancement in brewing to capitalize on the potential of Saccharomyces hybridization. Interspecific yeast hybrids used in modern monoculture inoculations benefit from a wide range of volatile metabolites that broaden the organoleptic complexity. This is the first report of sake brewing by Saccharomyces arboricola and its hybrids. S. arboricola x S. cerevisiae direct-mating generated cryotolerant interspecific hybrids which increased yields of ethanol and ethyl hexanoate compared to parental strains, important flavor attributes of fine Japanese ginjo sake rice wine. We used hierarchical clustering heatmapping with principal component analysis for metabolic profiling and found that the low levels of endogenous amino/organic acids clustered S. arboricola apart from the S. cerevisiae industrial strains. In sake fermentations, hybrid strains showed a mosaic profile of parental strains, while metabolic analysis suggested S. arboricola had a lower amino acid net uptake than S. cerevisiae. Additionally, we found an increase in ethanolic fermentation from pyruvate and increased sulfur metabolism. Together, our results suggest S. arboricola is poised for in-depth metabolomic exploration in sake fermentation.

Subject Areas

key words: sake; fermentation; hybrid; ginjo; ethanol; ethyl hexanoate; isoamyl acetate; yeast; saccharomyces; metabolism

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.