Preprint
Article

This version is not peer-reviewed.

Diversity-Generated Image Inpainting with Style Extraction

A peer-reviewed article of this preprint also exists.

Submitted:

02 December 2019

Posted:

03 December 2019

You are already at the latest version

Abstract
The latest methods based on deep learning have achieved amazing results regarding the complex work of inpainting large missing areas in an image. This type of method generally attempts to generate one single "optimal" inpainting result, ignoring many other plausible results. However, considering the uncertainty of the inpainting task, one sole result can hardly be regarded as a desired regeneration of the missing area. In view of this weakness, which is related to the design of the previous algorithms, we propose a novel deep generative model equipped with a brand new style extractor which can extract the style noise (a latent vector) from the ground truth image. Once obtained, the extracted style noise and the ground truth image are both input into the generator. We also craft a consistency loss that guides the generated image to approximate the ground truth. Meanwhile, the same extractor captures the style noise from the generated image, which is forced to approach the input noise according to the consistency loss. After iterations, our generator is able to learn the styles corresponding to multiple sets of noise. The proposed model can generate a (sufficiently large) number of inpainting results consistent with the context semantics of the image. Moreover, we check the effectiveness of our model on three databases, i.e., CelebA, Agricultural Disease, and MauFlex. Compared to state-of-the-art inpainting methods, this model is able to offer desirable inpainting results with both a better quality and higher diversity. The code and model will be made available on https://github.com/vivitsai/SEGAN.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated