Preprint
Article

A Large Scene Deceptive Jamming Method for Space-Borne SAR based on Time-Delay and Frequency-Shift with Template Segmentation

This version is not peer-reviewed.

Submitted:

26 November 2019

Posted:

27 November 2019

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Due to the advantages such as low power consumption and higher concealment, deceptive jamming against synthetic aperture radar (SAR) receives extensive attention during the past decades. However, the large scene deception jamming is still a challenge because of the huge computing burden. In this paper, we propose a new large scene deceptive jamming algorithm. First, the time-delay and frequency-shift (TDFS) algorithm is introduced to improve the jamming processing speed. The system function of jammer (JSF) for a fake scatter is simplified to the multiplication of the scattering coefficient, a time-delay term in range dimension and a frequency-shift term in azimuth dimension. Then, in order to solve the problem that the effective region of the TDFS algorithm is limited, the scene deceptive jamming template is divided into several blocks according to the SAR parameters and imaging quality control factor. The JSF of each block is calculated by the TDFS algorithm and added together to achieve the large scene jamming. Finally, the correction algorithm in squint mode is derived. The simplification and parallel block processing could improve the calculation efficiency significantly. The simulation results verified the validity of the algorithm.
Keywords: 
synthetic aperture radar (sar); space-borne sar; deceptive jamming
Subject: 
Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

435

Views

314

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated