Working Paper Article Version 1 This version is not peer-reviewed

Determination of the Ionization Energy and the Electron Affinity of Organic Molecular Crystals from First-Principles: Dependence on the Molecular Orientation at the Surface

Version 1 : Received: 25 November 2019 / Approved: 27 November 2019 / Online: 27 November 2019 (05:18:10 CET)

How to cite: Yanagisaswa, S. Determination of the Ionization Energy and the Electron Affinity of Organic Molecular Crystals from First-Principles: Dependence on the Molecular Orientation at the Surface. Preprints 2019, 2019110333 Yanagisaswa, S. Determination of the Ionization Energy and the Electron Affinity of Organic Molecular Crystals from First-Principles: Dependence on the Molecular Orientation at the Surface. Preprints 2019, 2019110333

Abstract

I demonstrate that the ionization energy (IE) and the electron affinity (EA) of organic molecular crystals can be predicted from first-principles. Here, I describe the induced electronic polarization and the electrostatic effects upon crystalline IE and EA. I also demonstrate that the electronic polarization mainly originates from the screened coulomb interaction inside the crystalline bulk phase, and that the electrostatic contribution to IE and EA crucially depends on the orientation of the molecule at the surface. The former is well described by the GW approximation, while the latter is reasonably estimated by the difference in frontier orbital energy between the gas phase and the surface at the level of a generalized gradient approximation to the density functional theory. The present methodology enables to demonstrate the impact of the electrostatic effect upon the energy level of the injected charge at a multi-monolayer surface of an organic semiconductor thin film.

Subject Areas

organic semiconductor; electronic polarization; GW approximation; electrostatic interaction; molecular orientation dependence

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.