Submitted:

22 November 2019

Posted:

24 November 2019

You are already at the latest version

Abstract
The use of machine learning (ML) approaches to target clinical problems is called to revolutionize clinical decision-making. The success of these tools is subjected to the understanding of the intrinsic processes being used during the classical pathway by which clinicians make decisions. In a parallelism with this pathway, ML can have an impact at four levels: for data acquisition, predominantly by extracting standardized, high-quality information with the smallest possible learning curve; for feature extraction, by discharging healthcare practitioners from performing tedious measurements on raw data; for interpretation, by digesting complex, heterogeneous data in order to augment the understanding of the patient status; and for decision support, by leveraging the previous step to predict clinical outcomes, response to treatment or to recommend a specific intervention. This paper discusses the state-of-the-art, as well as the current clinical status and challenges associated with each of these tasks, together with the challenges related to the learning process, the auditability/traceability, the system infrastructure and the integration within clinical processes.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

1921

Views

2011

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated