Preprint
Article

This version is not peer-reviewed.

Comparison among Different Fiber Coatings on the Concrete Shrinkage Test for Distributed Optical Strain Measurements based on Rayleigh Backscattering

A peer-reviewed article of this preprint also exists.

Submitted:

04 November 2019

Posted:

06 November 2019

Read the latest preprint version here

Abstract
The fiber optic strain measurement based on Rayleigh scattering has recently become increasingly popular in automotive or mechanical engineering for strain monitoring and in the construction industry in general, especially structural health monitoring. This technology enables the monitoring of strain along the entire fiber length. Several publications have been published, particularly on the applications to the structural component. This article addresses integrating optical fibers of different coatings into the concrete matrix to measure the shrinkage deformations. In this context, three different coating types were investigated regarding their strain transfer. The fibers were integrated into fine-grained concrete prisms, and the shrinkage strain was compared with a precise dial gauge. The analysis shows a high correlation between the reference method and the fiber measurement, especially with the Ormocer coating. The used acrylate coating is also consistent in the middle area of the specimen but requires a certain strain introduction length to indicate the actual strain. The main result of this study is a recommendation for fiber coatings for shrinkage measurement in fine grain concretes using the distributed fiber optic strain measurement. In addition, the advantages and disadvantages of the measurement method are presented.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated