Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Coupled Stratospheric Chemistry-Meteorology Data Assimilation. Part II: Weak and Strong Coupling

Version 1 : Received: 19 October 2019 / Approved: 21 October 2019 / Online: 21 October 2019 (05:09:58 CEST)

A peer-reviewed article of this Preprint also exists.

Ménard, R.; Gauthier, P.; Rochon, Y.; Robichaud, A.; de Grandpré, J.; Yang, Y.; Charrette, C.; Chabrillat, S. Coupled Stratospheric Chemistry–Meteorology Data Assimilation. Part II: Weak and Strong Coupling. Atmosphere 2019, 10, 798. Ménard, R.; Gauthier, P.; Rochon, Y.; Robichaud, A.; de Grandpré, J.; Yang, Y.; Charrette, C.; Chabrillat, S. Coupled Stratospheric Chemistry–Meteorology Data Assimilation. Part II: Weak and Strong Coupling. Atmosphere 2019, 10, 798.

Abstract

We examine data assimilation coupling between meteorology and chemistry in the stratosphere from both weak and strong coupling strategies. The study was performed with the Canadian operational weather prediction Global Environmental Multiscale (GEM) model coupled online with the photochemical stratospheric chemistry developed at the Belgian Institute for Space Aeronomy, described in Part I. Here, the Canadian Meteorological Centre’s operational variational assimilation system was extended to include errors of chemical variables and cross-covariances between meteorological and chemical variables in a 3D-Var configuration, and we added the adjoint of tracer advection in the 4D-Var configuration. Our results show that the assimilation of limb sounding observations from the MIPAS instrument on board Envisat can be used to anchor the AMSU-A radiance bias correction scheme. Also, the added value of limb sounding temperature observations on meteorology and transport is shown to be significant. Weak coupling data assimilation with ozone-radiation interaction is shown to give comparable on meteorology whether a simplified linearized or comprehensive ozone chemistry scheme is used. Strong coupling data assimilation, using static error cross-covariances between ozone and temperature in a 3D-Var context, produced inconclusive results with the approximations we used. We have also conducted the assimilation of long-lived species observations using 4D-Var to infer winds. Our results showed the added value of assimilating several long-lived species, and an improvement in the zonal wind in the Tropics within the troposphere and lower stratosphere. 4D-Var assimilation also induced a correction of zonal wind in the surf zone and a temperature bias in the lower tropical stratosphere

Keywords

coupled chemistry-meteorology data assimilation; weak and strong data assimilation coupling; Canadian Quick Covariance method (CQC); assimilation of MIPAS temperature observations; ozone-temperature cross-covariance; tracer-wind 4D-Var assimilation

Subject

Environmental and Earth Sciences, Atmospheric Science and Meteorology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.