Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Prevalent pH Controls the Capacity of Galdieria maxima to Use Ammonia and Nitrate as a Nitrogen Source

Version 1 : Received: 7 October 2019 / Approved: 8 October 2019 / Online: 8 October 2019 (11:32:24 CEST)

A peer-reviewed article of this Preprint also exists.

Iovinella, M.; Carbone, D.A.; Cioppa, D.; Davis, S.J.; Innangi, M.; Esposito, S.; Ciniglia, C. Prevalent pH Controls the Capacity of Galdieria maxima to Use Ammonia and Nitrate as a Nitrogen Source. Plants 2020, 9, 232. Iovinella, M.; Carbone, D.A.; Cioppa, D.; Davis, S.J.; Innangi, M.; Esposito, S.; Ciniglia, C. Prevalent pH Controls the Capacity of Galdieria maxima to Use Ammonia and Nitrate as a Nitrogen Source. Plants 2020, 9, 232.

Abstract

Galdieria maxima is a polyextremophilic alga capable of diverse metabolic processes. Ammonia is widely used in culture media typical of laboratory growth. Recent reports that this species can grow on wastes promote the concept that G. maxima might have biotechnological utility. Accordingly, there is a need to know the range of pH levels that can support G. maxima growth in a given nitrogen source. Here, we examined the combined effect of pH and nitrate/ammonium source on the growth and long-term response of the photochemical process to a pH gradient in different G. maxima strains. All were able to use differing nitrogen sources, despite both the growth rate and photochemical activity were significantly affected by the combination with the pH. All strains acidified the NH4+-medium (pH<3); only G. maxima IPPAS P507 showed reduced capacity in lowering the pH from 6.5. pH was a limiting factor in nitrate uptake at pH≥6.5; noteworthy, at pH 5 on nitrate G. maxima ACUF551 showed a good growth performance, despite the alkalization of the medium.

Keywords

galdieria; pH; ammonium; nitrate

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.