Preprint
Article

This version is not peer-reviewed.

Super-Multi-Junction Solar Cell, Device Configuration with the Potential of More Than 50 % of the Annual Energy Conversion Efficiency (Non-Concentration)

A peer-reviewed article of this preprint also exists.

Submitted:

09 October 2019

Posted:

14 October 2019

You are already at the latest version

Abstract
The highest efficiency solar cell won in the efficiency race does not always give the most excellent annual energy yield in the real world solar condition that the spectrum is ever-changing. The study of the radiative coupling of the concentrator solar cells implied that the efficiency could increase by the recycle of the radiative recombination generated by the surplus current in upper junction. Such configuration is called by a super-multi-junction cell. We expanded the model in the concentrator solar cell to non-concentrating installation. It was shown that this super-multi-junction cell configuration was found robust and can keep the maximum potential efficiency (50 % in realistic spectrum fluctuation) up to 10 junctions. The super-multi-junction cell is also robust in the bandgap engineering of each junction. Therefore, the future multi-junction may not be needed to tune the bandgap for matching the standard solar spectrum, as well as relying upon artificial technologies like ELO (Epitaxial lift-off), wafer-bonding, mechanical-stacking, and reverse-growth, but merely uses up-right and lattice-matching growth technologies. We have two challenging techniques; one is the optical cap layer that may be the directional photon coupling layer in the application of the photonics technologies, and another is the high-quality epitaxial growth with almost 100 % of the radiative efficiency.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated