Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Deriving Aerosol Absorption Properties from Solar Ultraviolet Radiation Spectral Measurements at Thessaloniki, Greece

Version 1 : Received: 3 September 2019 / Approved: 4 September 2019 / Online: 4 September 2019 (14:29:58 CEST)

A peer-reviewed article of this Preprint also exists.

Fountoulakis, I.; Natsis, A.; Siomos, N.; Drosoglou, T.; Bais, A.F. Deriving Aerosol Absorption Properties from Solar Ultraviolet Radiation Spectral Measurements at Thessaloniki, Greece. Remote Sens. 2019, 11, 2179. Fountoulakis, I.; Natsis, A.; Siomos, N.; Drosoglou, T.; Bais, A.F. Deriving Aerosol Absorption Properties from Solar Ultraviolet Radiation Spectral Measurements at Thessaloniki, Greece. Remote Sens. 2019, 11, 2179.

Abstract

The gap in knowledge regarding the radiative effects of aerosols in the UV region of the solar spectrum is large, mainly due to the lack of systematic measurements of the aerosol single scattering albedo (SSA) and absorption optical depth (AAOD). In the present study, spectral UV measurements performed in Thessaloniki, Greece by a double monochromator Brewer spectrophotometer in the period 1998 - 2017 are used for the calculation of the aforementioned optical properties. The main uncertainty factors have been described and there is an effort to quantify the overall uncertainties in SSA and AAOD. Analysis of the results suggests that the absorption by aerosols is much stronger in the UV relative to the visible. SSA follows a clear annual pattern ranging from ~0.7 in winter to ~0.85 in summer at wavelengths 320 – 360 nm, while AAOD peaks in summer and winter. The average AAOD for 2009 – 2011 is ~50% above the 2003 – 2006 average, possibly due to increased emissions of absorbing aerosols related to the economical crisis and the metro-railway construction works in the city center. A detailed analysis of the uncertainties in the retrieval of the SSA and the AAOD from the Brewer spectrophotometer has been also performed.

Keywords

solar UV radiation; aerosol absorption; SSA; AAOD; spectral measurements; aerosol optical properties

Subject

Environmental and Earth Sciences, Atmospheric Science and Meteorology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.