Preprint
Review

This version is not peer-reviewed.

Phytoremediation of Polluted Waterbodies with Aquatic plants: Recent Progress on Heavy Metal and Organic Pollutants

A peer-reviewed article of this preprint also exists.

Submitted:

01 September 2019

Posted:

02 September 2019

You are already at the latest version

Abstract
Heavy metals and organic pollutants are ubiquitous environmental pollutants affecting the quality of soil, water and air. Over the past 5 decades, many strategies have been developed for the remediation of polluted water. Strategies involving aquatic plant use are preferable to conventional methods. In this study, an attempt was made to provide a brief review on recent progresses in research and practical applications of phytoremediation for water resources with the following objectives: (1) to discuss the toxicity of toxic chemicals pollution in water to plant, animals and human health (2) to summarise the physicochemical factors affecting removal of toxic chemicals such as heavy metals and organic contaminants in aqueous solutions by aquatic plants; (3) to summarise and compare the removal rates of heavy metals and organic contaminants in aqueous solutions by diverse aquatic plants; and (4) to summarise chemometric models for testing aquatic plant performance. More than 20 aquatic plants specie have been used extensively while duckweed (L. minor), water hyacinth (Eichhornia crassipes), water lettuce (P. stratiotes) are the most common. Overall, chemometrics for performance assessment reported include: Growth rate (GR), Growth rate inhibition (% Inhibition), Metal uptake (MU), translocation/transfer factor (TF), bioconcentration factor (BCF), Percent metal uptake (% MU), Removal capacity (RC) and Tolerance index (TI) while absorption rate have been studied using the sorption kinetics and isotherms models such as pseudo-first-order (PFO), pseudo-second-order (PSO), Freundlich, Langmuir and Temkin. Using modeling and interpretation of adsorption isotherms for performance assessment is particularly good and increases level of accuracy obtained from adsorption processes of contaminant on plant. Conclusion was drawn by highlighting the gap in knowledge and suggesting key future areas of research for scientists and policymakers.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated