Preprint
Review

This version is not peer-reviewed.

Systematic Review of Deep Learning and Machine Learning Models in Biofuels Research

Submitted:

15 August 2019

Posted:

17 August 2019

You are already at the latest version

Abstract
Biofuels construct an essential pillar of energy systems. Biofuels are considered as a popular resource for electricity production, heating, household, and industrial usage, liquid fuels, and mobility around the world. Thus, the need for handling, modeling, decision-making, demand, and forecasting for biofuels are of utmost importance. Recently, machine learning (ML) and deep learning (DL) techniques have been accessible in modeling, optimizing, and handling biofuels production, consumption, and environmental impacts. The main aim of this study is to review and evaluate ML and DL techniques and their applications in handling biofuels production, consumption, and environmental impacts, both for modeling and optimization purposes. Hybrid and ensemble ML methods, as well as DL methods, have found to provide higher performance and accuracy in modeling the biofuels.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated