Preprint
Article

This version is not peer-reviewed.

Mode Splitting Induced by Mesoscopic Electron Dynamics in Strongly Coupled Metal Nanoparticles on Dielectric Substrates

  † These authors contributed equally to this work.

A peer-reviewed article of this preprint also exists.

Submitted:

08 August 2019

Posted:

12 August 2019

You are already at the latest version

Abstract
We study strong optical coupling of metal nanoparticle arrays with dielectric substrates. Based on the Fermi Golden Rule, the particle-substrate coupling is derived in terms of the photon absorption probability assuming a local dipole field. An increase in photocurrent gain is achieved through the optical coupling. In addition, we describe light-induced, mesoscopic electron dynamics via the nonlocal hydrodynamic theory of charges. At small nanoparticle size (<20nm), the impact of this type of spatial dispersion becomes sizable. Both absorption and scattering cross section of the nanoparticle are significantly increased through the contribution of additional nonlocal modes. We observe a splitting of local optical modes spanning several tenths of nanometers. This is a signature of semi-classical, strong optical coupling via the dynamic Stark effect, known as Autler-Townes splitting. The photocurrent generated in this description is increased by up to 2%, which agrees better with recent experiments than compared to identical classical setups with up to 6%. Both, the expressions derived for the particle-substrate coupling and the additional hydrodynamic equation for electrons are integrated into COMSOL for our simulations.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated